|
|
| version 1.5, 2003/12/20 11:49:47 | version 1.6, 2003/12/21 23:27:08 |
|---|---|
| Line 6 | Line 6 |
| #include "vram.h" | #include "vram.h" |
| #include "font.h" | #include "font.h" |
| // #define USE_HIMEM 0x10fff0 | |
| #define USE_HIMEM 0x110000 | #define USE_HIMEM 0x110000 |
| #if defined(TRACE) | |
| #define MEMORY_DEBUG | |
| #endif | |
| // ---- write byte | |
| #if defined(ARM) | |
| void MEMCALL i286_wt(UINT32 address, REG8 value); | |
| void MEMCALL i286_wtex(UINT32 address, REG8 value); | |
| #else | |
| static void MEMCALL i286_wt(UINT32 address, REG8 value) { | |
| mem[address] = (BYTE)value; | |
| } | |
| static void MEMCALL i286_wtex(UINT32 address, REG8 value) { | |
| mem[address & CPU_ADRSMASK] = (BYTE)value; | |
| } | |
| #endif | |
| #if defined(ARM) | |
| void MEMCALL tram_wt(UINT32 address, REG8 value); | |
| #else | |
| static void MEMCALL tram_wt(UINT32 address, REG8 value) { | |
| CPU_REMCLOCK -= MEMWAIT_TRAM; | |
| if (address < 0xa2000) { | |
| mem[address] = (BYTE)value; | |
| tramupdate[LOW12(address >> 1)] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address < 0xa3fe0) { | |
| if (!(address & 1)) { | |
| mem[address] = (BYTE)value; | |
| tramupdate[LOW12(address >> 1)] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| } | |
| else if (address < 0xa4000) { | |
| if (!(address & 1)) { | |
| if ((!(address & 2)) || (gdcs.msw_accessable)) { | |
| mem[address] = (BYTE)value; | |
| tramupdate[LOW12(address >> 1)] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| } | |
| } | |
| else if (address < 0xa5000) { | |
| if ((address & 1) && (cgwindow.writable & 1)) { | |
| cgwindow.writable |= 0x80; | |
| fontrom[cgwindow.high + ((address >> 1) & 0x0f)] = (BYTE)value; | |
| } | |
| } | |
| } | |
| #endif | |
| #if defined(ARM) | |
| void MEMCALL vram_w0(UINT32 address, REG8 value); | |
| void MEMCALL vram_w1(UINT32 address, REG8 value); | |
| #else | |
| static void MEMCALL vram_w0(UINT32 address, REG8 value) { | |
| CPU_REMCLOCK -= MEMWAIT_VRAM; | |
| mem[address] = (BYTE)value; | |
| vramupdate[LOW15(address)] |= 1; | |
| gdcs.grphdisp |= 1; | |
| } | |
| static void MEMCALL vram_w1(UINT32 address, REG8 value) { | |
| CPU_REMCLOCK -= MEMWAIT_VRAM; | |
| mem[address + VRAM_STEP] = (BYTE)value; | |
| vramupdate[LOW15(address)] |= 2; | |
| gdcs.grphdisp |= 2; | |
| } | |
| #endif | |
| #if defined(ARM) | |
| void MEMCALL grcg_rmw0(UINT32 address, REG8 value); | |
| void MEMCALL grcg_rmw1(UINT32 address, REG8 value); | |
| void MEMCALL grcg_tdw0(UINT32 address, REG8 value); | |
| void MEMCALL grcg_tdw1(UINT32 address, REG8 value); | |
| #else | |
| static void MEMCALL grcg_rmw0(UINT32 address, REG8 value) { | |
| REG8 mask; | |
| BYTE *vram; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| mask = ~value; | |
| address = LOW15(address); | |
| vramupdate[address] |= 1; | |
| gdcs.grphdisp |= 1; | |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM0_B] &= mask; | |
| vram[VRAM0_B] |= (value & grcg.tile[0].b[0]); | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM0_R] &= mask; | |
| vram[VRAM0_R] |= (value & grcg.tile[1].b[0]); | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM0_G] &= mask; | |
| vram[VRAM0_G] |= (value & grcg.tile[2].b[0]); | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM0_E] &= mask; | |
| vram[VRAM0_E] |= (value & grcg.tile[3].b[0]); | |
| } | |
| } | |
| static void MEMCALL grcg_rmw1(UINT32 address, REG8 value) { | |
| REG8 mask; | |
| BYTE *vram; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| mask = ~value; | |
| address = LOW15(address); | |
| vramupdate[address] |= 2; | |
| gdcs.grphdisp |= 2; | |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM1_B] &= mask; | |
| vram[VRAM1_B] |= (value & grcg.tile[0].b[0]); | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM1_R] &= mask; | |
| vram[VRAM1_R] |= (value & grcg.tile[1].b[0]); | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM1_G] &= mask; | |
| vram[VRAM1_G] |= (value & grcg.tile[2].b[0]); | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM1_E] &= mask; | |
| vram[VRAM1_E] |= (value & grcg.tile[3].b[0]); | |
| } | |
| } | |
| static void MEMCALL grcg_tdw0(UINT32 address, REG8 value) { | |
| BYTE *vram; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| address = LOW15(address); | |
| vramupdate[address] |= 1; | |
| gdcs.grphdisp |= 1; | |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM0_B] = grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM0_R] = grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM0_G] = grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM0_E] = grcg.tile[3].b[0]; | |
| } | |
| (void)value; | |
| } | |
| static void MEMCALL grcg_tdw1(UINT32 address, REG8 value) { | |
| BYTE *vram; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| address = LOW15(address); | |
| vramupdate[address] |= 2; | |
| gdcs.grphdisp |= 2; | |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM1_B] = grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM1_R] = grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM1_G] = grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM1_E] = grcg.tile[3].b[0]; | |
| } | |
| (void)value; | |
| } | |
| #endif | |
| #if 0 // defined(ARM) | |
| void MEMCALL egc_wt(UINT32 address, REG8 value); | |
| #else | |
| static void MEMCALL egc_wt(UINT32 address, REG8 value) { | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| egc_write(address, value); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| void MEMCALL emmc_wt(UINT32 address, REG8 value); | |
| #else | |
| static void MEMCALL emmc_wt(UINT32 address, REG8 value) { | |
| extmem.pageptr[(address >> 14) & 3][LOW14(address)] = (BYTE)value; | |
| } | |
| #endif | |
| #if defined(ARM) | |
| void MEMCALL i286_wn(UINT32 address, REG8 value); | |
| #else | |
| static void MEMCALL i286_wn(UINT32 address, REG8 value) { | |
| (void)address; | |
| (void)value; | |
| } | |
| #endif | |
| // ---- read byte | |
| #if defined(ARM) | |
| REG8 MEMCALL i286_rd(UINT32 address); | |
| REG8 MEMCALL i286_rdex(UINT32 address); | |
| #else | |
| static REG8 MEMCALL i286_rd(UINT32 address) { | |
| return(mem[address]); | |
| } | |
| static REG8 MEMCALL i286_rdex(UINT32 address) { | |
| return(mem[address & CPU_ADRSMASK]); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG8 MEMCALL tram_rd(UINT32 address); | |
| #else | |
| static REG8 MEMCALL tram_rd(UINT32 address) { | |
| CPU_REMCLOCK -= MEMWAIT_TRAM; | |
| if (address < 0xa4000) { | |
| return(mem[address]); | |
| } | |
| else if (address < 0xa5000) { | |
| if (address & 1) { | |
| return(fontrom[cgwindow.high + ((address >> 1) & 0x0f)]); | |
| } | |
| else { | |
| return(fontrom[cgwindow.low + ((address >> 1) & 0x0f)]); | |
| } | |
| } | |
| return(mem[address]); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG8 MEMCALL vram_r0(UINT32 address); | |
| REG8 MEMCALL vram_r1(UINT32 address); | |
| #else | |
| static REG8 MEMCALL vram_r0(UINT32 address) { | |
| CPU_REMCLOCK -= MEMWAIT_VRAM; | |
| return(mem[address]); | |
| } | |
| static REG8 MEMCALL vram_r1(UINT32 address) { | |
| CPU_REMCLOCK -= MEMWAIT_VRAM; | |
| return(mem[address + VRAM_STEP]); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG8 MEMCALL grcg_tcr0(UINT32 address); | |
| REG8 MEMCALL grcg_tcr1(UINT32 address); | |
| #else | |
| static REG8 MEMCALL grcg_tcr0(UINT32 address) { | |
| const BYTE *vram; | |
| REG8 ret; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| vram = mem + LOW15(address); | |
| ret = 0; | |
| if (!(grcg.modereg & 1)) { | |
| ret |= vram[VRAM0_B] ^ grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| ret |= vram[VRAM0_R] ^ grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| ret |= vram[VRAM0_G] ^ grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| ret |= vram[VRAM0_E] ^ grcg.tile[3].b[0]; | |
| } | |
| return(ret ^ 0xff); | |
| } | |
| static REG8 MEMCALL grcg_tcr1(UINT32 address) { | |
| const BYTE *vram; | |
| REG8 ret; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| ret = 0; | |
| vram = mem + LOW15(address); | |
| if (!(grcg.modereg & 1)) { | |
| ret |= vram[VRAM1_B] ^ grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| ret |= vram[VRAM1_R] ^ grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| ret |= vram[VRAM1_G] ^ grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| ret |= vram[VRAM1_E] ^ grcg.tile[3].b[0]; | |
| } | |
| return(ret ^ 0xff); | |
| } | |
| #endif | |
| static REG8 MEMCALL egc_rd(UINT32 address) { | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| return(egc_read(address)); | |
| } | |
| #if defined(ARM) | |
| REG8 MEMCALL emmc_rd(UINT32 address); | |
| #else | |
| static REG8 MEMCALL emmc_rd(UINT32 address) { | |
| return(extmem.pageptr[(address >> 14) & 3][LOW14(address)]); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG8 MEMCALL i286_itf(UINT32 address); | |
| #else | |
| static REG8 MEMCALL i286_itf(UINT32 address) { | |
| if (CPU_ITFBANK) { | |
| address = ITF_ADRS + LOW15(address); | |
| } | |
| return(mem[address]); | |
| } | |
| #endif | |
| // ---- write word | |
| #if defined(ARM) | |
| void MEMCALL i286w_wt(UINT32 address, REG16 value); | |
| void MEMCALL i286w_wtex(UINT32 address, REG16 value); | |
| #else | |
| static void MEMCALL i286w_wt(UINT32 address, REG16 value) { | |
| BYTE *ptr; | |
| ptr = mem + address; | |
| STOREINTELWORD(ptr, value); | |
| } | |
| static void MEMCALL i286w_wtex(UINT32 address, REG16 value) { | |
| BYTE *ptr; | |
| ptr = mem + (address & CPU_ADRSMASK); | |
| STOREINTELWORD(ptr, value); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| void MEMCALL tramw_wt(UINT32 address, REG16 value); | |
| #else | |
| static void MEMCALL tramw_wt(UINT32 address, REG16 value) { | |
| CPU_REMCLOCK -= MEMWAIT_TRAM; | |
| if (address < 0xa1fff) { | |
| STOREINTELWORD(mem + address, value); | |
| tramupdate[LOW12(address >> 1)] = 1; | |
| tramupdate[LOW12((address + 1) >> 1)] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address == 0xa1fff) { | |
| STOREINTELWORD(mem + address, value); | |
| tramupdate[0] = 1; | |
| tramupdate[0xfff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address < 0xa3fe0) { | |
| if (address & 1) { | |
| address++; | |
| value >>= 8; | |
| } | |
| mem[address] = (BYTE)value; | |
| tramupdate[LOW12(address >> 1)] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address < 0xa3fff) { | |
| if (address & 1) { | |
| address++; | |
| value >>= 8; | |
| } | |
| if ((!(address & 2)) || (gdcs.msw_accessable)) { | |
| mem[address] = (BYTE)value; | |
| tramupdate[LOW12(address >> 1)] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| } | |
| else if (address < 0xa5000) { | |
| if (address & 1) { | |
| value >>= 8; | |
| } | |
| if (cgwindow.writable & 1) { | |
| cgwindow.writable |= 0x80; | |
| fontrom[cgwindow.high + ((address >> 1) & 0x0f)] = (BYTE)value; | |
| } | |
| } | |
| } | |
| #endif | |
| #define GRCGW_NON(page) { \ | |
| CPU_REMCLOCK -= MEMWAIT_VRAM; \ | |
| STOREINTELWORD(mem + address + VRAM_STEP*(page), value); \ | |
| vramupdate[LOW15(address)] |= (1 << page); \ | |
| vramupdate[LOW15(address + 1)] |= (1 << page); \ | |
| gdcs.grphdisp |= (1 << page); \ | |
| } | |
| #define GRCGW_RMW(page) { \ | |
| BYTE *vram; \ | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; \ | |
| address = LOW15(address); \ | |
| vramupdate[address] |= (1 << page); \ | |
| vramupdate[address + 1] |= (1 << page); \ | |
| gdcs.grphdisp |= (1 << page); \ | |
| vram = mem + address + (VRAM_STEP * (page)); \ | |
| if (!(grcg.modereg & 1)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_B+0] &= (~tmp); \ | |
| vram[VRAM0_B+0] |= (tmp & grcg.tile[0].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_B+1] &= (~tmp); \ | |
| vram[VRAM0_B+1] |= (tmp & grcg.tile[0].b[0]); \ | |
| } \ | |
| if (!(grcg.modereg & 2)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_R+0] &= (~tmp); \ | |
| vram[VRAM0_R+0] |= (tmp & grcg.tile[1].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_R+1] &= (~tmp); \ | |
| vram[VRAM0_R+1] |= (tmp & grcg.tile[1].b[0]); \ | |
| } \ | |
| if (!(grcg.modereg & 4)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_G+0] &= (~tmp); \ | |
| vram[VRAM0_G+0] |= (tmp & grcg.tile[2].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_G+1] &= (~tmp); \ | |
| vram[VRAM0_G+1] |= (tmp & grcg.tile[2].b[0]); \ | |
| } \ | |
| if (!(grcg.modereg & 8)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_E+0] &= (~tmp); \ | |
| vram[VRAM0_E+0] |= (tmp & grcg.tile[3].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_E+1] &= (~tmp); \ | |
| vram[VRAM0_E+1] |= (tmp & grcg.tile[3].b[0]); \ | |
| } \ | |
| } | |
| #define GRCGW_TDW(page) { \ | |
| BYTE *vram; \ | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; \ | |
| address = LOW15(address); \ | |
| vramupdate[address] |= (1 << page); \ | |
| vramupdate[address + 1] |= (1 << page); \ | |
| gdcs.grphdisp |= (1 << page); \ | |
| vram = mem + address + (VRAM_STEP * (page)); \ | |
| if (!(grcg.modereg & 1)) { \ | |
| vram[VRAM0_B+0] = grcg.tile[0].b[0]; \ | |
| vram[VRAM0_B+1] = grcg.tile[0].b[0]; \ | |
| } \ | |
| if (!(grcg.modereg & 2)) { \ | |
| vram[VRAM0_R+0] = grcg.tile[1].b[0]; \ | |
| vram[VRAM0_R+1] = grcg.tile[1].b[0]; \ | |
| } \ | |
| if (!(grcg.modereg & 4)) { \ | |
| vram[VRAM0_G+0] = grcg.tile[2].b[0]; \ | |
| vram[VRAM0_G+1] = grcg.tile[2].b[0]; \ | |
| } \ | |
| if (!(grcg.modereg & 8)) { \ | |
| vram[VRAM0_E+0] = grcg.tile[3].b[0]; \ | |
| vram[VRAM0_E+1] = grcg.tile[3].b[0]; \ | |
| } \ | |
| (void)value; \ | |
| } | |
| #if defined(ARM) | |
| void MEMCALL vramw_w0(UINT32 address, REG16 value); | |
| void MEMCALL vramw_w1(UINT32 address, REG16 value); | |
| void MEMCALL grcgw_rmw0(UINT32 address, REG16 value); | |
| void MEMCALL grcgw_rmw1(UINT32 address, REG16 value); | |
| void MEMCALL grcgw_tdw0(UINT32 address, REG16 value); | |
| void MEMCALL grcgw_tdw1(UINT32 address, REG16 value); | |
| #else | |
| static void MEMCALL vramw_w0(UINT32 address, REG16 value) GRCGW_NON(0) | |
| static void MEMCALL vramw_w1(UINT32 address, REG16 value) GRCGW_NON(1) | |
| static void MEMCALL grcgw_rmw0(UINT32 address, REG16 value) GRCGW_RMW(0) | |
| static void MEMCALL grcgw_rmw1(UINT32 address, REG16 value) GRCGW_RMW(1) | |
| static void MEMCALL grcgw_tdw0(UINT32 address, REG16 value) GRCGW_TDW(0) | |
| static void MEMCALL grcgw_tdw1(UINT32 address, REG16 value) GRCGW_TDW(1) | |
| #endif | |
| static void MEMCALL egcw_wt(UINT32 address, REG16 value) { | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| if (!(address & 1)) { | |
| egc_write_w(address, value); | |
| } | |
| else { | |
| if (!(egc.sft & 0x1000)) { | |
| egc_write(address, (REG8)value); | |
| egc_write(address + 1, (REG8)(value >> 8)); | |
| } | |
| else { | |
| egc_write(address + 1, (REG8)(value >> 8)); | |
| egc_write(address, (REG8)value); | |
| } | |
| } | |
| } | |
| #if defined(ARM) | |
| void MEMCALL emmcw_wt(UINT32 address, REG16 value); | |
| #else | |
| static void MEMCALL emmcw_wt(UINT32 address, REG16 value) { | |
| BYTE *ptr; | |
| if ((address & 0x3fff) != 0x3fff) { | |
| ptr = extmem.pageptr[(address >> 14) & 3] + LOW14(address); | |
| STOREINTELWORD(ptr, value); | |
| } | |
| else { | |
| extmem.pageptr[(address >> 14) & 3][0x3fff] = (BYTE)value; | |
| extmem.pageptr[((address + 1) >> 14) & 3][0] = (BYTE)(value >> 8); | |
| } | |
| } | |
| #endif | |
| #if defined(ARM) | |
| void MEMCALL i286w_wn(UINT32 address, REG16 value); | |
| #else | |
| static void MEMCALL i286w_wn(UINT32 address, REG16 value) { | |
| (void)address; | |
| (void)value; | |
| } | |
| #endif | |
| // ---- read word | |
| #if defined(ARM) | |
| REG16 MEMCALL i286w_rd(UINT32 address); | |
| REG16 MEMCALL i286w_rdex(UINT32 address); | |
| #else | |
| static REG16 MEMCALL i286w_rd(UINT32 address) { | |
| BYTE *ptr; | |
| ptr = mem + address; | |
| return(LOADINTELWORD(ptr)); | |
| } | |
| static REG16 MEMCALL i286w_rdex(UINT32 address) { | |
| BYTE *ptr; | |
| ptr = mem + (address & CPU_ADRSMASK); | |
| return(LOADINTELWORD(ptr)); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG16 MEMCALL tramw_rd(UINT32 address); | |
| #else | |
| static REG16 MEMCALL tramw_rd(UINT32 address) { | |
| CPU_REMCLOCK -= MEMWAIT_TRAM; | |
| if (address < (0xa4000 - 1)) { | |
| return(LOADINTELWORD(mem + address)); | |
| } | |
| else if (address == 0xa3fff) { | |
| return(mem[address] + (fontrom[cgwindow.low] << 8)); | |
| } | |
| else if (address < 0xa4fff) { | |
| if (address & 1) { | |
| REG16 ret; | |
| ret = fontrom[cgwindow.high + ((address >> 1) & 0x0f)]; | |
| ret += fontrom[cgwindow.low + (((address + 1) >> 1) & 0x0f)] << 8; | |
| return(ret); | |
| } | |
| else { | |
| REG16 ret; | |
| ret = fontrom[cgwindow.low + ((address >> 1) & 0x0f)]; | |
| ret += fontrom[cgwindow.high + ((address >> 1) & 0x0f)] << 8; | |
| return(ret); | |
| } | |
| } | |
| else if (address == 0xa4fff) { | |
| return((mem[0xa5000] << 8) | fontrom[cgwindow.high + 15]); | |
| } | |
| return(LOADINTELWORD(mem + address)); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG16 MEMCALL vramw_r0(UINT32 address); | |
| REG16 MEMCALL vramw_r1(UINT32 address); | |
| #else | |
| static REG16 MEMCALL vramw_r0(UINT32 address) { | |
| CPU_REMCLOCK -= MEMWAIT_VRAM; | |
| return(LOADINTELWORD(mem + address)); | |
| } | |
| static REG16 MEMCALL vramw_r1(UINT32 address) { | |
| CPU_REMCLOCK -= MEMWAIT_VRAM; | |
| return(LOADINTELWORD(mem + address + VRAM_STEP)); | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG16 MEMCALL grcgw_tcr0(UINT32 address); | |
| REG16 MEMCALL grcgw_tcr1(UINT32 address); | |
| #else | |
| static REG16 MEMCALL grcgw_tcr0(UINT32 address) { | |
| BYTE *vram; | |
| REG16 ret; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| ret = 0; | |
| vram = mem + LOW15(address); | |
| if (!(grcg.modereg & 1)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_B) ^ grcg.tile[0].w; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_R) ^ grcg.tile[1].w; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_G) ^ grcg.tile[2].w; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_E) ^ grcg.tile[3].w; | |
| } | |
| return((UINT16)~ret); | |
| } | |
| static REG16 MEMCALL grcgw_tcr1(UINT32 address) { | |
| BYTE *vram; | |
| REG16 ret; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| ret = 0; | |
| vram = mem + LOW15(address); | |
| if (!(grcg.modereg & 1)) { | |
| ret |= LOADINTELWORD(vram + VRAM1_B) ^ grcg.tile[0].w; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| ret |= LOADINTELWORD(vram + VRAM1_R) ^ grcg.tile[1].w; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| ret |= LOADINTELWORD(vram + VRAM1_G) ^ grcg.tile[2].w; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| ret |= LOADINTELWORD(vram + VRAM1_E) ^ grcg.tile[3].w; | |
| } | |
| return((UINT16)(~ret)); | |
| } | |
| #endif | |
| static REG16 MEMCALL egcw_rd(UINT32 address) { | |
| REG16 ret; | |
| CPU_REMCLOCK -= MEMWAIT_GRCG; | |
| if (!(address & 1)) { | |
| return(egc_read_w(address)); | |
| } | |
| else { | |
| if (!(egc.sft & 0x1000)) { | |
| ret = egc_read(address); | |
| ret += egc_read(address + 1) << 8; | |
| return(ret); | |
| } | |
| else { | |
| ret = egc_read(address + 1) << 8; | |
| ret += egc_read(address); | |
| return(ret); | |
| } | |
| } | |
| } | |
| #if defined(ARM) | |
| REG16 MEMCALL emmcw_rd(UINT32 address); | |
| #else | |
| static REG16 MEMCALL emmcw_rd(UINT32 address) { | |
| const BYTE *ptr; | |
| REG16 ret; | |
| if ((address & 0x3fff) != 0x3fff) { | |
| ptr = extmem.pageptr[(address >> 14) & 3] + LOW14(address); | |
| return(LOADINTELWORD(ptr)); | |
| } | |
| else { | |
| ret = extmem.pageptr[(address >> 14) & 3][0x3fff]; | |
| ret += extmem.pageptr[((address + 1) >> 14) & 3][0] << 8; | |
| return(ret); | |
| } | |
| } | |
| #endif | |
| #if defined(ARM) | |
| REG16 MEMCALL i286w_itf(UINT32 address); | |
| #else | |
| static REG16 MEMCALL i286w_itf(UINT32 address) { | |
| if (CPU_ITFBANK) { | |
| address = ITF_ADRS + LOW15(address); | |
| } | |
| return(LOADINTELWORD(mem + address)); | |
| } | |
| #endif | |
| // ---- table | |
| #if 0 | |
| typedef void (MEMCALL * MEM8WRITE)(UINT32 address, REG8 value); | |
| typedef REG8 (MEMCALL * MEM8READ)(UINT32 address); | |
| typedef void (MEMCALL * MEM16WRITE)(UINT32 address, REG16 value); | |
| typedef REG16 (MEMCALL * MEM16READ)(UINT32 address); | |
| typedef struct { | |
| MEM8READ rd8[0x20]; | |
| MEM8WRITE wr8[0x20]; | |
| MEM16READ rd16[0x20]; | |
| MEM16WRITE wr16[0x20]; | |
| } MEMFN; | |
| typedef struct { | |
| MEM8READ rd8; | |
| MEM8WRITE wr8; | |
| MEM16READ rd16; | |
| MEM16WRITE wr16; | |
| } VACCTBL; | |
| #if defined(ARM) | |
| MEMFN memfn = // -> memory.s | |
| #else | |
| static MEMFN memfn = | |
| #endif | |
| {{i286_rdex, i286_rdex, i286_rd, i286_rd, // 00 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 20 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 40 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 60 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 80 | |
| tram_rd, vram_r0, vram_r0, vram_r0, // a0 | |
| emmc_rd, emmc_rd, i286_rd, i286_rd, // c0 | |
| vram_r0, i286_rd, i286_rd, i286_itf}, // f0 | |
| {i286_wtex, i286_wtex, i286_wt, i286_wt, // 00 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 20 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 40 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 60 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 80 | |
| tram_wt, vram_w0, vram_w0, vram_w0, // a0 | |
| emmc_wt, emmc_wt, i286_wn, i286_wn, // c0 | |
| vram_w0, i286_wn, i286_wn, i286_wn}, // e0 | |
| {i286w_rdex, i286w_rdex, i286w_rd, i286w_rd, // 00 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 20 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 40 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 60 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 80 | |
| tramw_rd, vramw_r0, vramw_r0, vramw_r0, // a0 | |
| emmcw_rd, emmcw_rd, i286w_rd, i286w_rd, // c0 | |
| vramw_r0, i286w_rd, i286w_rd, i286w_itf}, // e0 | |
| {i286w_wtex, i286w_wtex, i286w_wt, i286w_wt, // 00 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 20 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 40 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 60 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 80 | |
| tramw_wt, vramw_w0, vramw_w0, vramw_w0, // a0 | |
| emmcw_wt, emmcw_wt, i286w_wn, i286w_wn, // c0 | |
| vramw_w0, i286w_wn, i286w_wn, i286w_wn}}; // e0 | |
| static const VACCTBL vacctbl[0x10] = { | |
| {vram_r0, vram_w0, vramw_r0, vramw_w0}, // 00 | |
| {vram_r1, vram_w1, vramw_r1, vramw_w1}, | |
| {vram_r0, vram_w0, vramw_r0, vramw_w0}, | |
| {vram_r1, vram_w1, vramw_r1, vramw_w1}, | |
| {vram_r0, vram_w0, vramw_r0, vramw_w0}, // 40 | |
| {vram_r1, vram_w1, vramw_r1, vramw_w1}, | |
| {vram_r0, vram_w0, vramw_r0, vramw_w0}, | |
| {vram_r1, vram_w1, vramw_r1, vramw_w1}, | |
| {grcg_tcr0, grcg_tdw0, grcgw_tcr0, grcgw_tdw0}, // 80 tdw/tcr | |
| {grcg_tcr1, grcg_tdw1, grcgw_tcr1, grcgw_tdw1}, | |
| {egc_rd, egc_wt, egcw_rd, egcw_wt}, | |
| {egc_rd, egc_wt, egcw_rd, egcw_wt}, | |
| {vram_r0, grcg_rmw0, vramw_r0, grcgw_rmw0}, // c0 rmw | |
| {vram_r1, grcg_rmw1, vramw_r1, grcgw_rmw1}, | |
| {egc_rd, egc_wt, egcw_rd, egcw_wt}, | |
| {egc_rd, egc_wt, egcw_rd, egcw_wt}}; | |
| #if defined(ARM) | |
| REG8 MEMCALL i286_nonram_r(UINT32 address); | |
| REG16 MEMCALL i286_nonram_rw(UINT32 address); | |
| #else | |
| static REG8 MEMCALL i286_nonram_r(UINT32 address) { | |
| (void)address; | |
| return(0xff); | |
| } | |
| static REG16 MEMCALL i286_nonram_rw(UINT32 address) { | |
| (void)address; | |
| return(0xffff); | |
| } | |
| #endif | |
| void MEMCALL i286_vram_dispatch(UINT func) { | |
| const VACCTBL *vacc; | |
| vacc = vacctbl + (func & 0x0f); | |
| memfn.rd8[0xa8000 >> 15] = vacc->rd8; | |
| memfn.rd8[0xb0000 >> 15] = vacc->rd8; | |
| memfn.rd8[0xb8000 >> 15] = vacc->rd8; | |
| memfn.rd8[0xe0000 >> 15] = vacc->rd8; | |
| memfn.wr8[0xa8000 >> 15] = vacc->wr8; | |
| memfn.wr8[0xb0000 >> 15] = vacc->wr8; | |
| memfn.wr8[0xb8000 >> 15] = vacc->wr8; | |
| memfn.wr8[0xe0000 >> 15] = vacc->wr8; | |
| memfn.rd16[0xa8000 >> 15] = vacc->rd16; | |
| memfn.rd16[0xb0000 >> 15] = vacc->rd16; | |
| memfn.rd16[0xb8000 >> 15] = vacc->rd16; | |
| memfn.rd16[0xe0000 >> 15] = vacc->rd16; | |
| memfn.wr16[0xa8000 >> 15] = vacc->wr16; | |
| memfn.wr16[0xb0000 >> 15] = vacc->wr16; | |
| memfn.wr16[0xb8000 >> 15] = vacc->wr16; | |
| memfn.wr16[0xe0000 >> 15] = vacc->wr16; | |
| if (!(func & 0x10)) { // degital | |
| memfn.wr8[0xe0000 >> 15] = i286_wn; | |
| memfn.wr16[0xe0000 >> 15] = i286w_wn; | |
| memfn.rd8[0xe0000 >> 15] = i286_nonram_r; | |
| memfn.rd16[0xe0000 >> 15] = i286_nonram_rw; | |
| } | |
| } | |
| #endif | |
| #if !defined(ARM) | |
| REG8 MEMCALL i286_memoryread(UINT32 address) { | |
| if (address < I286_MEMREADMAX) { | |
| return(mem[address]); | |
| } | |
| #if defined(USE_HIMEM) | |
| else if (address >= USE_HIMEM) { | |
| address -= 0x100000; | |
| if (address < CPU_EXTMEMSIZE) { | |
| return(CPU_EXTMEM[address]); | |
| } | |
| else { | |
| return(0xff); | |
| } | |
| } | |
| #endif | |
| else { | |
| return(memfn.rd8[(address >> 15) & 0x1f](address)); | |
| } | |
| } | |
| REG16 MEMCALL i286_memoryread_w(UINT32 address) { | |
| REG16 ret; | |
| if (address < (I286_MEMREADMAX - 1)) { | |
| return(LOADINTELWORD(mem + address)); | |
| } | |
| #if defined(USE_HIMEM) | |
| else if (address >= (USE_HIMEM - 1)) { | |
| address -= 0x100000; | |
| if (address == (USE_HIMEM - 0x100000 - 1)) { | |
| ret = mem[0x100000 + address]; | |
| } | |
| else if (address < CPU_EXTMEMSIZE) { | |
| ret = CPU_EXTMEM[address]; | |
| } | |
| else { | |
| ret = 0xff; | |
| } | |
| address++; | |
| if (address < CPU_EXTMEMSIZE) { | |
| ret += CPU_EXTMEM[address] << 8; | |
| } | |
| else { | |
| ret += 0xff00; | |
| } | |
| return(ret); | |
| } | |
| #endif | |
| else if ((address & 0x7fff) != 0x7fff) { | |
| return(memfn.rd16[(address >> 15) & 0x1f](address)); | |
| } | |
| else { | |
| ret = memfn.rd8[(address >> 15) & 0x1f](address); | |
| address++; | |
| ret += memfn.rd8[(address >> 15) & 0x1f](address) << 8; | |
| return(ret); | |
| } | |
| } | |
| void MEMCALL i286_memorywrite(UINT32 address, REG8 value) { | |
| if (address < I286_MEMWRITEMAX) { | |
| mem[address] = (BYTE)value; | |
| } | |
| #if defined(USE_HIMEM) | |
| else if (address >= USE_HIMEM) { | |
| address -= 0x100000; | |
| if (address < CPU_EXTMEMSIZE) { | |
| CPU_EXTMEM[address] = (BYTE)value; | |
| } | |
| } | |
| #endif | |
| else { | |
| memfn.wr8[(address >> 15) & 0x1f](address, value); | |
| } | |
| } | |
| void MEMCALL i286_memorywrite_w(UINT32 address, REG16 value) { | |
| if (address < (I286_MEMWRITEMAX - 1)) { | |
| STOREINTELWORD(mem + address, value); | |
| } | |
| #if defined(USE_HIMEM) | |
| else if (address >= (USE_HIMEM - 1)) { | |
| address -= 0x100000; | |
| if (address == (USE_HIMEM - 0x100000 - 1)) { | |
| mem[address] = (BYTE)value; | |
| } | |
| else if (address < CPU_EXTMEMSIZE) { | |
| CPU_EXTMEM[address] = (BYTE)value; | |
| } | |
| address++; | |
| if (address < CPU_EXTMEMSIZE) { | |
| CPU_EXTMEM[address] = (BYTE)(value >> 8); | |
| } | |
| } | |
| #endif | |
| else if ((address & 0x7fff) != 0x7fff) { | |
| memfn.wr16[(address >> 15) & 0x1f](address, value); | |
| } | |
| else { | |
| memfn.wr8[(address >> 15) & 0x1f](address, (BYTE)value); | |
| address++; | |
| memfn.wr8[(address >> 15) & 0x1f](address, (BYTE)(value >> 8)); | |
| } | |
| } | |
| #endif | |
| REG8 MEMCALL i286_membyte_read(UINT seg, UINT off) { | REG8 MEMCALL i286_membyte_read(UINT seg, UINT off) { |