|
|
| version 1.1.1.1, 2003/10/16 17:57:47 | version 1.31, 2005/05/20 13:59:47 |
|---|---|
| Line 1 | Line 1 |
| #include "compiler.h" | #include "compiler.h" |
| #include "i286.h" | |
| #include "memory.h" | #ifndef NP2_MEMORY_ASM |
| #include "egcmem.h" | |
| #include "cpucore.h" | |
| #include "pccore.h" | #include "pccore.h" |
| #include "iocore.h" | #include "iocore.h" |
| #include "memtram.h" | |
| #include "memvram.h" | |
| #include "memegc.h" | |
| #if defined(SUPPORT_PC9821) | |
| #include "memvga.h" | |
| #endif | |
| #include "memems.h" | |
| #include "memepp.h" | |
| #include "vram.h" | #include "vram.h" |
| #include "font.h" | #include "font.h" |
| #define USE_HIMEM | UINT8 mem[0x200000]; |
| // ---- write byte | |
| static void MEMCALL i286_wt(UINT32 address, BYTE value) { | typedef void (MEMCALL * MEM8WRITE)(UINT32 address, REG8 value); |
| typedef REG8 (MEMCALL * MEM8READ)(UINT32 address); | |
| mem[address & extmem.adrsmask] = value; | typedef void (MEMCALL * MEM16WRITE)(UINT32 address, REG16 value); |
| } | typedef REG16 (MEMCALL * MEM16READ)(UINT32 address); |
| static void MEMCALL tram_wt(UINT32 address, BYTE value) { | |
| nevent.remainclock -= vramop.tramwait; | |
| if (address < 0xa2000) { | |
| mem[address] = value; | |
| tramupdate[(address >> 1) & 0x0fff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address < 0xa3fe0) { | |
| if (!(address & 1)) { | |
| mem[address] = value; | |
| tramupdate[(address >> 1) & 0x0fff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| } | |
| else if (address < 0xa4000) { | |
| if (!(address & 1)) { | |
| if ((!(address & 2)) || (gdcs.msw_accessable)) { | |
| mem[address] = value; | |
| tramupdate[(address >> 1) & 0x0fff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| } | |
| } | |
| else if (address < 0xa5000) { | |
| if ((address & 1) && (cgwindow.writable & 1)) { | |
| cgwindow.writable |= 0x80; | |
| font[cgwindow.high + ((address >> 1) & 0x0f)] = value; | |
| } | |
| } | |
| } | |
| static void MEMCALL vram_w0(UINT32 address, BYTE value) { | |
| nevent.remainclock -= vramop.vramwait; | // ---- MAIN |
| mem[address] = value; | |
| vramupdate[address & 0x7fff] |= 1; | |
| gdcs.grphdisp |= 1; | |
| } | |
| static void MEMCALL vram_w1(UINT32 address, BYTE value) { | static REG8 MEMCALL memmain_rd8(UINT32 address) { |
| nevent.remainclock -= vramop.vramwait; | return(mem[address]); |
| mem[address + VRAM_STEP] = value; | |
| vramupdate[address & 0x7fff] |= 2; | |
| gdcs.grphdisp |= 2; | |
| } | } |
| static void MEMCALL grcg_rmw0(UINT32 address, BYTE value) { | static REG16 MEMCALL memmain_rd16(UINT32 address) { |
| BYTE mask; | const UINT8 *ptr; |
| BYTE *vram; | |
| nevent.remainclock -= vramop.grcgwait; | ptr = mem + address; |
| mask = ~value; | return(LOADINTELWORD(ptr)); |
| address &= 0x7fff; | |
| vramupdate[address] |= 1; | |
| gdcs.grphdisp |= 1; | |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM0_B] &= mask; | |
| vram[VRAM0_B] |= (value & grcg.tile[0].b[0]); | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM0_R] &= mask; | |
| vram[VRAM0_R] |= (value & grcg.tile[1].b[0]); | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM0_G] &= mask; | |
| vram[VRAM0_G] |= (value & grcg.tile[2].b[0]); | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM0_E] &= mask; | |
| vram[VRAM0_E] |= (value & grcg.tile[3].b[0]); | |
| } | |
| } | } |
| static void MEMCALL grcg_rmw1(UINT32 address, BYTE value) { | static void MEMCALL memmain_wr8(UINT32 address, REG8 value) { |
| BYTE mask; | mem[address] = (UINT8)value; |
| BYTE *vram; | |
| nevent.remainclock -= vramop.grcgwait; | |
| mask = ~value; | |
| address &= 0x7fff; | |
| vramupdate[address] |= 2; | |
| gdcs.grphdisp |= 2; | |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM1_B] &= mask; | |
| vram[VRAM1_B] |= (value & grcg.tile[0].b[0]); | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM1_R] &= mask; | |
| vram[VRAM1_R] |= (value & grcg.tile[1].b[0]); | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM1_G] &= mask; | |
| vram[VRAM1_G] |= (value & grcg.tile[2].b[0]); | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM1_E] &= mask; | |
| vram[VRAM1_E] |= (value & grcg.tile[3].b[0]); | |
| } | |
| } | } |
| static void MEMCALL grcg_tdw0(UINT32 address, BYTE value) { | static void MEMCALL memmain_wr16(UINT32 address, REG16 value) { |
| BYTE *vram; | UINT8 *ptr; |
| nevent.remainclock -= vramop.grcgwait; | ptr = mem + address; |
| address &= 0x7fff; | STOREINTELWORD(ptr, value); |
| vramupdate[address] |= 1; | |
| gdcs.grphdisp |= 1; | |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM0_B] = grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM0_R] = grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM0_G] = grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM0_E] = grcg.tile[3].b[0]; | |
| } | |
| (void)value; | |
| } | } |
| static void MEMCALL grcg_tdw1(UINT32 address, BYTE value) { | |
| BYTE *vram; | // ---- N/C |
| nevent.remainclock -= vramop.grcgwait; | static REG8 MEMCALL memnc_rd8(UINT32 address) { |
| address &= 0x7fff; | |
| vramupdate[address] |= 2; | (void)address; |
| gdcs.grphdisp |= 2; | return(0xff); |
| vram = mem + address; | |
| if (!(grcg.modereg & 1)) { | |
| vram[VRAM1_B] = grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| vram[VRAM1_R] = grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| vram[VRAM1_G] = grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| vram[VRAM1_E] = grcg.tile[3].b[0]; | |
| } | |
| (void)value; | |
| } | } |
| static void MEMCALL egc_wt(UINT32 address, BYTE value) { | static REG16 MEMCALL memnc_rd16(UINT32 address) { |
| egc_write(address, value); | (void)address; |
| return(0xffff); | |
| } | } |
| static void MEMCALL emmc_wt(UINT32 address, BYTE value) { | static void MEMCALL memnc_wr8(UINT32 address, REG8 value) { |
| extmem.pageptr[(address >> 14) & 3][address & 0x3fff] = value; | (void)address; |
| (void)value; | |
| } | } |
| static void MEMCALL i286_wn(UINT32 address, BYTE value) { | static void MEMCALL memnc_wr16(UINT32 address, REG16 value) { |
| (void)address; | (void)address; |
| (void)value; | (void)value; |
| } | } |
| // ---- read byte | // ---- memory 000000-0ffffff + 64KB |
| static BYTE MEMCALL i286_rd(UINT32 address) { | typedef struct { |
| MEM8READ rd8[0x22]; | |
| MEM8WRITE wr8[0x22]; | |
| MEM16READ rd16[0x22]; | |
| MEM16WRITE wr16[0x22]; | |
| } MEMFN0; | |
| typedef struct { | |
| MEM8READ brd8; // E8000-F7FFF byte read | |
| MEM8READ ird8; // F8000-FFFFF byte read | |
| MEM8WRITE bwr8; // E8000-FFFFF byte write | |
| MEM16READ brd16; // E8000-F7FFF word read | |
| MEM16READ ird16; // F8000-FFFFF word read | |
| MEM16WRITE bwr16; // F8000-FFFFF word write | |
| } MMAPTBL; | |
| typedef struct { | |
| MEM8READ rd8; | |
| MEM8WRITE wr8; | |
| MEM16READ rd16; | |
| MEM16WRITE wr16; | |
| } VACCTBL; | |
| static MEMFN0 memfn0 = { | |
| {memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 00 | |
| memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 20 | |
| memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 40 | |
| memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 60 | |
| memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 80 | |
| memtram_rd8, memvram0_rd8, memvram0_rd8, memvram0_rd8, // a0 | |
| memems_rd8, memems_rd8, memmain_rd8, memmain_rd8, // c0 | |
| memvram0_rd8, memmain_rd8, memmain_rd8, memf800_rd8, // e0 | |
| memmain_rd8, memmain_rd8}, | |
| {memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 00 | |
| memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 20 | |
| memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 40 | |
| memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 60 | |
| memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 80 | |
| memtram_wr8, memvram0_wr8, memvram0_wr8, memvram0_wr8, // a0 | |
| memems_wr8, memems_wr8, memd000_wr8, memd000_wr8, // c0 | |
| memvram0_wr8, memnc_wr8, memnc_wr8, memnc_wr8, // e0 | |
| memmain_wr8, memmain_wr8}, | |
| {memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 00 | |
| memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 20 | |
| memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 40 | |
| memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 60 | |
| memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 80 | |
| memtram_rd16, memvram0_rd16, memvram0_rd16, memvram0_rd16, // a0 | |
| memems_rd16, memems_rd16, memmain_rd16, memmain_rd16, // c0 | |
| memvram0_rd16, memmain_rd16, memmain_rd16, memf800_rd16, // e0 | |
| memmain_rd16, memmain_rd16}, | |
| {memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 00 | |
| memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 20 | |
| memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 40 | |
| memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 60 | |
| memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 80 | |
| memtram_wr16, memvram0_wr16, memvram0_wr16, memvram0_wr16, // a0 | |
| memems_wr16, memems_wr16, memd000_wr16, memd000_wr16, // c0 | |
| memvram0_wr16, memnc_wr16, memnc_wr16, memnc_wr16, // e0 | |
| memmain_wr16, memmain_wr16}}; | |
| static const MMAPTBL mmaptbl[2] = { | |
| {memmain_rd8, memf800_rd8, memnc_wr8, | |
| memmain_rd16, memf800_rd16, memnc_wr16}, | |
| {memf800_rd8, memf800_rd8, memepson_wr8, | |
| memf800_rd16, memf800_rd16, memepson_wr16}}; | |
| static const VACCTBL vacctbl[0x10] = { | |
| {memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16}, // 00 | |
| {memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16}, | |
| {memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16}, | |
| {memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16}, | |
| {memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16}, // 40 | |
| {memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16}, | |
| {memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16}, | |
| {memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16}, | |
| {memtcr0_rd8, memtdw0_wr8, memtcr0_rd16, memtdw0_wr16}, // 80 | |
| {memtcr1_rd8, memtdw1_wr8, memtcr1_rd16, memtdw1_wr16}, | |
| {memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16}, | |
| {memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16}, | |
| {memvram0_rd8, memrmw0_wr8, memvram0_rd16, memrmw0_wr16}, // c0 | |
| {memvram1_rd8, memrmw1_wr8, memvram1_rd16, memrmw1_wr16}, | |
| {memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16}, | |
| {memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16}}; | |
| void MEMCALL memm_arch(UINT type) { | |
| const MMAPTBL *mm; | |
| mm = mmaptbl + (type & 1); | |
| memfn0.rd8[0xe8000 >> 15] = mm->brd8; | |
| memfn0.rd8[0xf0000 >> 15] = mm->brd8; | |
| memfn0.rd8[0xf8000 >> 15] = mm->ird8; | |
| memfn0.wr8[0xe8000 >> 15] = mm->bwr8; | |
| memfn0.wr8[0xf0000 >> 15] = mm->bwr8; | |
| memfn0.wr8[0xf8000 >> 15] = mm->bwr8; | |
| memfn0.rd16[0xe8000 >> 15] = mm->brd16; | |
| memfn0.rd16[0xf0000 >> 15] = mm->brd16; | |
| memfn0.rd16[0xf8000 >> 15] = mm->ird16; | |
| memfn0.wr16[0xe8000 >> 15] = mm->bwr16; | |
| memfn0.wr16[0xf0000 >> 15] = mm->bwr16; | |
| memfn0.wr16[0xf8000 >> 15] = mm->bwr16; | |
| } | |
| void MEMCALL memm_vram(UINT func) { | |
| const VACCTBL *vacc; | |
| #if defined(SUPPORT_PC9821) | |
| if (!(func & 0x20)) { | |
| #endif // defined(SUPPORT_PC9821) | |
| vacc = vacctbl + (func & 0x0f); | |
| memfn0.rd8[0xa8000 >> 15] = vacc->rd8; | |
| memfn0.rd8[0xb0000 >> 15] = vacc->rd8; | |
| memfn0.rd8[0xb8000 >> 15] = vacc->rd8; | |
| memfn0.rd8[0xe0000 >> 15] = vacc->rd8; | |
| memfn0.wr8[0xa8000 >> 15] = vacc->wr8; | |
| memfn0.wr8[0xb0000 >> 15] = vacc->wr8; | |
| memfn0.wr8[0xb8000 >> 15] = vacc->wr8; | |
| memfn0.wr8[0xe0000 >> 15] = vacc->wr8; | |
| memfn0.rd16[0xa8000 >> 15] = vacc->rd16; | |
| memfn0.rd16[0xb0000 >> 15] = vacc->rd16; | |
| memfn0.rd16[0xb8000 >> 15] = vacc->rd16; | |
| memfn0.rd16[0xe0000 >> 15] = vacc->rd16; | |
| memfn0.wr16[0xa8000 >> 15] = vacc->wr16; | |
| memfn0.wr16[0xb0000 >> 15] = vacc->wr16; | |
| memfn0.wr16[0xb8000 >> 15] = vacc->wr16; | |
| memfn0.wr16[0xe0000 >> 15] = vacc->wr16; | |
| if (!(func & (1 << VOPBIT_ANALOG))) { // digital | |
| memfn0.rd8[0xe0000 >> 15] = memnc_rd8; | |
| memfn0.wr8[0xe0000 >> 15] = memnc_wr8; | |
| memfn0.rd16[0xe0000 >> 15] = memnc_rd16; | |
| memfn0.wr16[0xe0000 >> 15] = memnc_wr16; | |
| } | |
| #if defined(SUPPORT_PC9821) | |
| } | |
| else { | |
| memfn0.rd8[0xa8000 >> 15] = memvga0_rd8; | |
| memfn0.rd8[0xb0000 >> 15] = memvga1_rd8; | |
| memfn0.rd8[0xb8000 >> 15] = memnc_rd8; | |
| memfn0.rd8[0xe0000 >> 15] = memvgaio_rd8; | |
| memfn0.wr8[0xa8000 >> 15] = memvga0_wr8; | |
| memfn0.wr8[0xb0000 >> 15] = memvga1_wr8; | |
| memfn0.wr8[0xb8000 >> 15] = memnc_wr8; | |
| memfn0.wr8[0xe0000 >> 15] = memvgaio_wr8; | |
| memfn0.rd16[0xa8000 >> 15] = memvga0_rd16; | |
| memfn0.rd16[0xb0000 >> 15] = memvga1_rd16; | |
| memfn0.rd16[0xb8000 >> 15] = memnc_rd16; | |
| memfn0.rd16[0xe0000 >> 15] = memvgaio_rd16; | |
| memfn0.wr16[0xa8000 >> 15] = memvga0_wr16; | |
| memfn0.wr16[0xb0000 >> 15] = memvga1_wr16; | |
| memfn0.wr16[0xb8000 >> 15] = memnc_wr16; | |
| memfn0.wr16[0xe0000 >> 15] = memvgaio_wr16; | |
| } | |
| #endif // defined(SUPPORT_PC9821) | |
| } | |
| // ---- memory f00000-fffffff | |
| typedef struct { | |
| MEM8READ rd8[8]; | |
| MEM8WRITE wr8[8]; | |
| MEM16READ rd16[8]; | |
| MEM16WRITE wr16[8]; | |
| } MEMFNF; | |
| static REG8 MEMCALL memsys_rd8(UINT32 address) { | |
| address -= 0xf00000; | |
| return(memfn0.rd8[address >> 15](address)); | |
| } | |
| static REG16 MEMCALL memsys_rd16(UINT32 address) { | |
| address -= 0xf00000; | |
| return(memfn0.rd16[address >> 15](address)); | |
| } | |
| static void MEMCALL memsys_wr8(UINT32 address, REG8 value) { | |
| address -= 0xf00000; | |
| memfn0.wr8[address >> 15](address, value); | |
| } | |
| static void MEMCALL memsys_wr16(UINT32 address, REG16 value) { | |
| address -= 0xf00000; | |
| memfn0.wr16[address >> 15](address, value); | |
| } | |
| #if defined(SUPPORT_PC9821) | |
| static const MEMFNF memfnf = { | |
| {memvgaf_rd8, memvgaf_rd8, memvgaf_rd8, memvgaf_rd8, | |
| memnc_rd8, memsys_rd8, memsys_rd8, memsys_rd8}, | |
| {memvgaf_wr8, memvgaf_wr8, memvgaf_wr8, memvgaf_wr8, | |
| memnc_wr8, memsys_wr8, memsys_wr8, memsys_wr8}, | |
| {memvgaf_rd16, memvgaf_rd16, memvgaf_rd16, memvgaf_rd16, | |
| memnc_rd16, memsys_rd16, memsys_rd16, memsys_rd16}, | |
| {memvgaf_wr16, memvgaf_wr16, memvgaf_wr16, memvgaf_wr16, | |
| memnc_wr16, memsys_wr16, memsys_wr16, memsys_wr16}}; | |
| #else | |
| static const MEMFNF memfnf = { | |
| {memnc_rd8, memnc_rd8, memnc_rd8, memnc_rd8, | |
| memnc_rd8, memsys_rd8, memsys_rd8, memsys_rd8}, | |
| {memnc_wr8, memnc_wr8, memnc_wr8, memnc_wr8, | |
| memnc_wr8, memsys_wr8, memsys_wr8, memsys_wr8}, | |
| {memnc_rd16, memnc_rd16, memnc_rd16, memnc_rd16, | |
| memnc_rd16, memsys_rd16, memsys_rd16, memsys_rd16}, | |
| {memnc_wr16, memnc_wr16, memnc_wr16, memnc_wr16, | |
| memnc_wr16, memsys_wr16, memsys_wr16, memsys_wr16}}; | |
| #endif | |
| return(mem[address & extmem.adrsmask]); | |
| } | |
| static BYTE MEMCALL tram_rd(UINT32 address) { | // ---- |
| nevent.remainclock -= vramop.tramwait; | REG8 MEMCALL memp_read8(UINT32 address) { |
| if (address < 0xa4000) { | |
| if (address < I286_MEMREADMAX) { | |
| return(mem[address]); | return(mem[address]); |
| } | } |
| else if (address < 0xa5000) { | else { |
| if (address & 1) { | address = address & CPU_ADRSMASK; |
| return(font[cgwindow.high + ((address >> 1) & 0x0f)]); | if (address < USE_HIMEM) { |
| return(memfn0.rd8[address >> 15](address)); | |
| } | } |
| else { | else if (address < CPU_EXTLIMIT16) { |
| return(font[cgwindow.low + ((address >> 1) & 0x0f)]); | return(CPU_EXTMEMBASE[address]); |
| } | } |
| } | else if (address < 0x00f00000) { |
| return(mem[address]); | return(0xff); |
| } | |
| static BYTE MEMCALL vram_r0(UINT32 address) { | |
| nevent.remainclock -= vramop.vramwait; | |
| return(mem[address]); | |
| } | |
| static BYTE MEMCALL vram_r1(UINT32 address) { | |
| nevent.remainclock -= vramop.vramwait; | |
| return(mem[address + VRAM_STEP]); | |
| } | |
| static BYTE MEMCALL grcg_tcr0(UINT32 address) { | |
| const BYTE *vram; | |
| BYTE ret; | |
| nevent.remainclock -= vramop.grcgwait; | |
| vram = mem + (address & 0x7fff); | |
| ret = 0; | |
| if (!(grcg.modereg & 1)) { | |
| ret |= vram[VRAM0_B] ^ grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| ret |= vram[VRAM0_R] ^ grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| ret |= vram[VRAM0_G] ^ grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| ret |= vram[VRAM0_E] ^ grcg.tile[3].b[0]; | |
| } | |
| return(~ret); | |
| } | |
| static BYTE MEMCALL grcg_tcr1(UINT32 address) { | |
| BYTE *vram; | |
| BYTE ret; | |
| nevent.remainclock -= vramop.grcgwait; | |
| ret = 0; | |
| vram = mem + (address & 0x7fff); | |
| if (!(grcg.modereg & 1)) { | |
| ret |= vram[VRAM1_B] ^ grcg.tile[0].b[0]; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| ret |= vram[VRAM1_R] ^ grcg.tile[1].b[0]; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| ret |= vram[VRAM1_G] ^ grcg.tile[2].b[0]; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| ret |= vram[VRAM1_E] ^ grcg.tile[3].b[0]; | |
| } | |
| return(~ret); | |
| } | |
| static BYTE MEMCALL egc_rd(UINT32 address) { | |
| return(egc_read(address)); | |
| } | |
| static BYTE MEMCALL emmc_rd(UINT32 address) { | |
| return(extmem.pageptr[(address >> 14) & 3][address & 0x3fff]); | |
| } | |
| static BYTE MEMCALL i286_itf(UINT32 address) { | |
| if (itf.bank) { | |
| address = ITF_ADRS + (address & 0x7fff); | |
| } | |
| return(mem[address]); | |
| } | |
| // ---- write word | |
| static void MEMCALL i286w_wt(UINT32 address, UINT16 value) { | |
| BYTE *ptr; | |
| ptr = mem + (address & extmem.adrsmask); | |
| STOREINTELWORD(ptr, value); | |
| } | |
| static void MEMCALL tramw_wt(UINT32 address, UINT16 value) { | |
| if (address < 0xa1fff) { | |
| STOREINTELWORD(mem + address, value); | |
| tramupdate[(address >> 1) & 0x0fff] = 1; | |
| tramupdate[((address + 1) >> 1) & 0x0fff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address == 0xa1fff) { | |
| STOREINTELWORD(mem + address, value); | |
| tramupdate[0] = 1; | |
| tramupdate[0xfff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address < 0xa3fe0) { | |
| if (address & 1) { | |
| address++; | |
| value >>= 8; | |
| } | |
| mem[address] = (BYTE)value; | |
| tramupdate[(address >> 1) & 0x0fff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| else if (address < 0xa3fff) { | |
| if (address & 1) { | |
| address++; | |
| value >>= 8; | |
| } | |
| if ((!(address & 2)) || (gdcs.msw_accessable)) { | |
| mem[address] = (BYTE)value; | |
| tramupdate[(address >> 1) & 0x0fff] = 1; | |
| gdcs.textdisp |= 1; | |
| } | |
| } | |
| else if (address < 0xa5000) { | |
| if (address & 1) { | |
| value >>= 8; | |
| } | |
| if (cgwindow.writable & 1) { | |
| cgwindow.writable |= 0x80; | |
| font[cgwindow.high + ((address >> 1) & 0x0f)] = (BYTE)value; | |
| } | } |
| } | else if (address < 0x01000000) { |
| } | return(memfnf.rd8[(address >> 17) & 7](address)); |
| #define GRCGW_NON(page) { \ | |
| nevent.remainclock -= vramop.vramwait; \ | |
| STOREINTELWORD(mem + address + VRAM_STEP*(page), value); \ | |
| vramupdate[address & 0x7fff] |= (1 << page); \ | |
| vramupdate[(address + 1) & 0x7fff] |= (1 << page); \ | |
| gdcs.grphdisp |= (1 << page); \ | |
| } | |
| #define GRCGW_RMW(page) { \ | |
| BYTE *vram; \ | |
| nevent.remainclock -= vramop.grcgwait; \ | |
| address &= 0x7fff; \ | |
| vramupdate[address] |= (1 << page); \ | |
| vramupdate[address + 1] |= (1 << page); \ | |
| gdcs.grphdisp |= (1 << page); \ | |
| vram = mem + address + (VRAM_STEP * (page)); \ | |
| if (!(grcg.modereg & 1)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_B+0] &= (~tmp); \ | |
| vram[VRAM0_B+0] |= (tmp & grcg.tile[0].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_B+1] &= (~tmp); \ | |
| vram[VRAM0_B+1] |= (tmp & grcg.tile[0].b[0]); \ | |
| } \ | |
| if (!(grcg.modereg & 2)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_R+0] &= (~tmp); \ | |
| vram[VRAM0_R+0] |= (tmp & grcg.tile[1].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_R+1] &= (~tmp); \ | |
| vram[VRAM0_R+1] |= (tmp & grcg.tile[1].b[0]); \ | |
| } \ | |
| if (!(grcg.modereg & 4)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_G+0] &= (~tmp); \ | |
| vram[VRAM0_G+0] |= (tmp & grcg.tile[2].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_G+1] &= (~tmp); \ | |
| vram[VRAM0_G+1] |= (tmp & grcg.tile[2].b[0]); \ | |
| } \ | |
| if (!(grcg.modereg & 8)) { \ | |
| BYTE tmp; \ | |
| tmp = (BYTE)value; \ | |
| vram[VRAM0_E+0] &= (~tmp); \ | |
| vram[VRAM0_E+0] |= (tmp & grcg.tile[3].b[0]); \ | |
| tmp = (BYTE)(value >> 8); \ | |
| vram[VRAM0_E+1] &= (~tmp); \ | |
| vram[VRAM0_E+1] |= (tmp & grcg.tile[3].b[0]); \ | |
| } \ | |
| } | |
| #define GRCGW_TDW(page) { \ | |
| BYTE *vram; \ | |
| nevent.remainclock -= vramop.grcgwait; \ | |
| address &= 0x7fff; \ | |
| vramupdate[address] |= (1 << page); \ | |
| vramupdate[address + 1] |= (1 << page); \ | |
| gdcs.grphdisp |= (1 << page); \ | |
| vram = mem + address + (VRAM_STEP * (page)); \ | |
| if (!(grcg.modereg & 1)) { \ | |
| vram[VRAM0_B+0] = grcg.tile[0].b[0]; \ | |
| vram[VRAM0_B+1] = grcg.tile[0].b[0]; \ | |
| } \ | |
| if (!(grcg.modereg & 2)) { \ | |
| vram[VRAM0_R+0] = grcg.tile[1].b[0]; \ | |
| vram[VRAM0_R+1] = grcg.tile[1].b[0]; \ | |
| } \ | |
| if (!(grcg.modereg & 4)) { \ | |
| vram[VRAM0_G+0] = grcg.tile[2].b[0]; \ | |
| vram[VRAM0_G+1] = grcg.tile[2].b[0]; \ | |
| } \ | |
| if (!(grcg.modereg & 8)) { \ | |
| vram[VRAM0_E+0] = grcg.tile[3].b[0]; \ | |
| vram[VRAM0_E+1] = grcg.tile[3].b[0]; \ | |
| } \ | |
| (void)value; \ | |
| } | |
| static void MEMCALL vramw_w0(UINT32 address, UINT16 value) GRCGW_NON(0) | |
| static void MEMCALL vramw_w1(UINT32 address, UINT16 value) GRCGW_NON(1) | |
| static void MEMCALL grcgw_rmw0(UINT32 address, UINT16 value) GRCGW_RMW(0) | |
| static void MEMCALL grcgw_rmw1(UINT32 address, UINT16 value) GRCGW_RMW(1) | |
| static void MEMCALL grcgw_tdw0(UINT32 address, UINT16 value) GRCGW_TDW(0) | |
| static void MEMCALL grcgw_tdw1(UINT32 address, UINT16 value) GRCGW_TDW(1) | |
| static void MEMCALL egcw_wt(UINT32 address, UINT16 value) { | |
| if (!(address & 1)) { | |
| egc_write_w(address, value); | |
| } | |
| else { | |
| if (!(egc.sft & 0x1000)) { | |
| egc_write(address, (BYTE)value); | |
| egc_write(address + 1, (BYTE)(value >> 8)); | |
| } | } |
| #if defined(CPU_EXTLIMIT) | |
| else if (address < CPU_EXTLIMIT) { | |
| return(CPU_EXTMEMBASE[address]); | |
| } | |
| #endif // defined(CPU_EXTLIMIT) | |
| #if defined(SUPPORT_PC9821) | |
| else if ((address >= 0xfff00000) && (address < 0xfff80000)) { | |
| return(memvgaf_rd8(address)); | |
| } | |
| #endif // defined(SUPPORT_PC9821) | |
| else { | else { |
| egc_write(address + 1, (BYTE)(value >> 8)); | // TRACEOUT(("out of mem (read8): %x", address)); |
| egc_write(address, (BYTE)value); | return(0xff); |
| } | } |
| } | } |
| } | } |
| static void MEMCALL emmcw_wt(UINT32 address, UINT16 value) { | REG16 MEMCALL memp_read16(UINT32 address) { |
| BYTE *ptr; | |
| if ((address & 0x3fff) != 0x3fff) { | |
| ptr = extmem.pageptr[(address >> 14) & 3] + (address & 0x3fff); | |
| STOREINTELWORD(ptr, value); | |
| } | |
| else { | |
| extmem.pageptr[(address >> 14) & 3][0x3fff] = (BYTE)value; | |
| extmem.pageptr[((address + 1)>> 14) & 3][0] = (BYTE)(value >> 8); | |
| } | |
| } | |
| static void MEMCALL i286w_wn(UINT32 address, UINT16 value) { | |
| (void)address; | |
| (void)value; | |
| } | |
| REG16 ret; | |
| // ---- read word | if (address < (I286_MEMREADMAX - 1)) { |
| static UINT16 MEMCALL i286w_rd(UINT32 address) { | |
| BYTE *ptr; | |
| ptr = mem + (address & extmem.adrsmask); | |
| return(LOADINTELWORD(ptr)); | |
| } | |
| static UINT16 MEMCALL tramw_rd(UINT32 address) { | |
| nevent.remainclock -= vramop.tramwait; | |
| if (address < (0xa4000 - 1)) { | |
| return(LOADINTELWORD(mem + address)); | return(LOADINTELWORD(mem + address)); |
| } | } |
| else if (address == 0xa3fff) { | else if ((address + 1) & 0x7fff) { // non 32kb boundary |
| return(mem[address] + (font[cgwindow.low] << 8)); | address = address & CPU_ADRSMASK; |
| } | if (address < USE_HIMEM) { |
| else if (address < 0xa4fff) { | return(memfn0.rd16[address >> 15](address)); |
| if (address & 1) { | } |
| UINT16 ret; | else if (address < CPU_EXTLIMIT16) { |
| ret = font[cgwindow.high + ((address >> 1) & 0x0f)]; | return(LOADINTELWORD(CPU_EXTMEMBASE + address)); |
| ret += font[cgwindow.low + (((address + 1) >> 1) & 0x0f)] << 8; | } |
| return(ret); | else if (address < 0x00f00000) { |
| return(0xffff); | |
| } | |
| else if (address < 0x01000000) { | |
| return(memfnf.rd16[(address >> 17) & 7](address)); | |
| } | |
| #if defined(CPU_EXTLIMIT) | |
| else if (address < CPU_EXTLIMIT) { | |
| return(LOADINTELWORD(CPU_EXTMEMBASE + address)); | |
| } | |
| #endif // defined(CPU_EXTLIMIT) | |
| #if defined(SUPPORT_PC9821) | |
| else if ((address >= 0xfff00000) && (address < 0xfff80000)) { | |
| return(memvgaf_rd16(address)); | |
| } | } |
| #endif // defined(SUPPORT_PC9821) | |
| else { | else { |
| UINT16 ret; | // TRACEOUT(("out of mem (read16): %x", address)); |
| ret = font[cgwindow.low + ((address >> 1) & 0x0f)]; | return(0xffff); |
| ret += font[cgwindow.high + ((address >> 1) & 0x0f)] << 8; | |
| return(ret); | |
| } | } |
| } | } |
| else if (address == 0xa4fff) { | else { |
| return((mem[0xa5000] << 8) | font[cgwindow.high + 15]); | ret = memp_read8(address + 0); |
| } | ret += (REG16)(memp_read8(address + 1) << 8); |
| return(LOADINTELWORD(mem + address)); | return(ret); |
| } | |
| static UINT16 MEMCALL vramw_r0(UINT32 address) { | |
| nevent.remainclock -= vramop.vramwait; | |
| return(LOADINTELWORD(mem + address)); | |
| } | |
| static UINT16 MEMCALL vramw_r1(UINT32 address) { | |
| nevent.remainclock -= vramop.vramwait; | |
| return(LOADINTELWORD(mem + address + VRAM_STEP)); | |
| } | |
| static UINT16 MEMCALL grcgw_tcr0(UINT32 address) { | |
| BYTE *vram; | |
| UINT16 ret; | |
| nevent.remainclock -= vramop.grcgwait; | |
| ret = 0; | |
| vram = mem + (address & 0x7fff); | |
| if (!(grcg.modereg & 1)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_B) ^ grcg.tile[0].w; | |
| } | |
| if (!(grcg.modereg & 2)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_R) ^ grcg.tile[1].w; | |
| } | |
| if (!(grcg.modereg & 4)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_G) ^ grcg.tile[2].w; | |
| } | |
| if (!(grcg.modereg & 8)) { | |
| ret |= LOADINTELWORD(vram + VRAM0_E) ^ grcg.tile[3].w; | |
| } | } |
| return(~ret); | |
| } | } |
| static UINT16 MEMCALL grcgw_tcr1(UINT32 address) { | UINT32 MEMCALL memp_read32(UINT32 address) { |
| BYTE *vram; | UINT32 pos; |
| UINT16 ret; | UINT32 ret; |
| nevent.remainclock -= vramop.grcgwait; | if (address < (I286_MEMREADMAX - 3)) { |
| ret = 0; | return(LOADINTELDWORD(mem + address)); |
| vram = mem + (address & 0x7fff); | |
| if (!(grcg.modereg & 1)) { | |
| ret |= LOADINTELWORD(vram + VRAM1_B) ^ grcg.tile[0].w; | |
| } | } |
| if (!(grcg.modereg & 2)) { | else if (address >= USE_HIMEM) { |
| ret |= LOADINTELWORD(vram + VRAM1_R) ^ grcg.tile[1].w; | pos = address & CPU_ADRSMASK; |
| if ((pos >= USE_HIMEM) && ((pos + 3) < CPU_EXTLIMIT16)) { | |
| return(LOADINTELDWORD(CPU_EXTMEMBASE + pos)); | |
| } | |
| } | } |
| if (!(grcg.modereg & 4)) { | if (!(address & 1)) { |
| ret |= LOADINTELWORD(vram + VRAM1_G) ^ grcg.tile[2].w; | ret = memp_read16(address + 0); |
| ret += (UINT32)memp_read16(address + 2) << 16; | |
| } | } |
| if (!(grcg.modereg & 8)) { | else { |
| ret |= LOADINTELWORD(vram + VRAM1_E) ^ grcg.tile[3].w; | ret = memp_read8(address + 0); |
| ret += (UINT32)memp_read16(address + 1) << 8; | |
| ret += (UINT32)memp_read8(address + 3) << 24; | |
| } | } |
| return(~ret); | return(ret); |
| } | } |
| static UINT16 MEMCALL egcw_rd(UINT32 address) { | void MEMCALL memp_write8(UINT32 address, REG8 value) { |
| UINT16 ret; | |
| if (!(address & 1)) { | if (address < I286_MEMWRITEMAX) { |
| return(egc_read_w(address)); | mem[address] = (UINT8)value; |
| } | } |
| else { | else { |
| if (!(egc.sft & 0x1000)) { | address = address & CPU_ADRSMASK; |
| ret = egc_read(address); | if (address < USE_HIMEM) { |
| ret += (UINT16)egc_read(address + 1) << 8; | memfn0.wr8[address >> 15](address, value); |
| return(ret); | |
| } | } |
| else { | else if (address < CPU_EXTLIMIT16) { |
| UINT16 ret; | CPU_EXTMEMBASE[address] = (UINT8)value; |
| ret = (UINT16)egc_read(address + 1) << 8; | |
| ret += egc_read(address); | |
| return(ret); | |
| } | } |
| } | else if (address < 0x00f00000) { |
| } | } |
| else if (address < 0x01000000) { | |
| static UINT16 MEMCALL emmcw_rd(UINT32 address) { | memfnf.wr8[(address >> 17) & 7](address, value); |
| BYTE *ptr; | |
| ptr = extmem.pageptr[(address >> 14) & 3] + (address & 0x3fff); | |
| return(LOADINTELWORD(ptr)); | |
| } | |
| static UINT16 MEMCALL i286w_itf(UINT32 address) { | |
| if (itf.bank) { | |
| address = ITF_ADRS + (address & 0x7fff); | |
| } | |
| return(LOADINTELWORD(mem + address)); | |
| } | |
| // ---- table | |
| typedef void (MEMCALL * MEM8WRITE)(UINT32 address, BYTE value); | |
| typedef BYTE (MEMCALL * MEM8READ)(UINT32 address); | |
| typedef void (MEMCALL * MEM16WRITE)(UINT32 address, UINT16 value); | |
| typedef UINT16 (MEMCALL * MEM16READ)(UINT32 address); | |
| static MEM8WRITE memory_write[] = { | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 00 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 20 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 40 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 60 | |
| i286_wt, i286_wt, i286_wt, i286_wt, // 80 | |
| tram_wt, vram_w0, vram_w0, vram_w0, // a0 | |
| emmc_wt, emmc_wt, i286_wn, i286_wn, // c0 | |
| vram_w0, i286_wn, i286_wn, i286_wn}; // e0 | |
| static MEM8READ memory_read[] = { | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 00 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 20 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 40 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 60 | |
| i286_rd, i286_rd, i286_rd, i286_rd, // 80 | |
| tram_rd, vram_r0, vram_r0, vram_r0, // a0 | |
| emmc_rd, emmc_rd, i286_rd, i286_rd, // c0 | |
| vram_r0, i286_rd, i286_rd, i286_itf}; // f0 | |
| static MEM16WRITE memword_write[] = { | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 00 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 20 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 40 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 60 | |
| i286w_wt, i286w_wt, i286w_wt, i286w_wt, // 80 | |
| tramw_wt, vramw_w0, vramw_w0, vramw_w0, // a0 | |
| emmcw_wt, emmcw_wt, i286w_wn, i286w_wn, // c0 | |
| vramw_w0, i286w_wn, i286w_wn, i286w_wn}; // e0 | |
| static MEM16READ memword_read[] = { | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 00 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 20 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 40 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 60 | |
| i286w_rd, i286w_rd, i286w_rd, i286w_rd, // 80 | |
| tramw_rd, vramw_r0, vramw_r0, vramw_r0, // a0 | |
| emmcw_rd, emmcw_rd, i286w_rd, i286w_rd, // c0 | |
| vramw_r0, i286w_rd, i286w_rd, i286w_itf}; // e0 | |
| static const MEM8WRITE vram_write[] = { | |
| vram_w0, vram_w1, vram_w0, vram_w1, // 00 | |
| vram_w0, vram_w1, vram_w0, vram_w1, // 40 | |
| grcg_tdw0, grcg_tdw1, egc_wt, egc_wt, // 80 tdw/tcr | |
| grcg_rmw0, grcg_rmw1, egc_wt, egc_wt}; // c0 rmw | |
| static const MEM8READ vram_read[] = { | |
| vram_r0, vram_r1, vram_r0, vram_r1, // 00 | |
| vram_r0, vram_r1, vram_r0, vram_r1, // 40 | |
| grcg_tcr0, grcg_tcr1, egc_rd, egc_rd, // 80 tdw/tcr | |
| vram_r0, vram_r1, egc_rd, egc_rd}; // c0 rmw | |
| static const MEM16WRITE vramw_write[] = { | |
| vramw_w0, vramw_w1, vramw_w0, vramw_w1, // 00 | |
| vramw_w0, vramw_w1, vramw_w0, vramw_w1, // 40 | |
| grcgw_tdw0, grcgw_tdw1, egcw_wt, egcw_wt, // 80 tdw/tcr | |
| grcgw_rmw0, grcgw_rmw1, egcw_wt, egcw_wt}; // c0 rmw | |
| static const MEM16READ vramw_read[] = { | |
| vramw_r0, vramw_r1, vramw_r0, vramw_r1, // 00 | |
| vramw_r0, vramw_r1, vramw_r0, vramw_r1, // 40 | |
| grcgw_tcr0, grcgw_tcr1, egcw_rd, egcw_rd, // 80 tdw/tcr | |
| vramw_r0, vramw_r1, egcw_rd, egcw_rd}; // c0 rmw | |
| static BYTE MEMCALL i286_nonram_r(UINT32 address) { | |
| (void)address; | |
| return(0xff); | |
| } | |
| static UINT16 MEMCALL i286_nonram_rw(UINT32 address) { | |
| (void)address; | |
| return(0xffff); | |
| } | |
| void MEMCALL i286_vram_dispatch(UINT func) { | |
| UINT proc; | |
| proc = func & 0x0f; | |
| memory_write[0xa8000 >> 15] = vram_write[proc]; | |
| memory_write[0xb0000 >> 15] = vram_write[proc]; | |
| memory_write[0xb8000 >> 15] = vram_write[proc]; | |
| memory_write[0xe0000 >> 15] = vram_write[proc]; | |
| memory_read[0xa8000 >> 15] = vram_read[proc]; | |
| memory_read[0xb0000 >> 15] = vram_read[proc]; | |
| memory_read[0xb8000 >> 15] = vram_read[proc]; | |
| memory_read[0xe0000 >> 15] = vram_read[proc]; | |
| memword_write[0xa8000 >> 15] = vramw_write[proc]; | |
| memword_write[0xb0000 >> 15] = vramw_write[proc]; | |
| memword_write[0xb8000 >> 15] = vramw_write[proc]; | |
| memword_write[0xe0000 >> 15] = vramw_write[proc]; | |
| memword_read[0xa8000 >> 15] = vramw_read[proc]; | |
| memword_read[0xb0000 >> 15] = vramw_read[proc]; | |
| memword_read[0xb8000 >> 15] = vramw_read[proc]; | |
| memword_read[0xe0000 >> 15] = vramw_read[proc]; | |
| if (!(func & 0x10)) { // degital | |
| memory_write[0xe0000 >> 15] = i286_wn; | |
| memword_write[0xe0000 >> 15] = i286w_wn; | |
| memory_read[0xe0000 >> 15] = i286_nonram_r; | |
| memword_read[0xe0000 >> 15] = i286_nonram_rw; | |
| } | |
| } | |
| BYTE MEMCALL i286_memoryread(UINT32 address) { | |
| if (address < I286_MEMREADMAX) { | |
| return(mem[address]); | |
| } | |
| #if defined(USE_HIMEM) | |
| else if (address >= 0x10fff0) { | |
| address -= 0x100000; | |
| if (address < extmemmng_size) { | |
| return(extmemmng_ptr[address]); | |
| } | } |
| #if defined(CPU_EXTLIMIT) | |
| else if (address < CPU_EXTLIMIT) { | |
| CPU_EXTMEMBASE[address] = (UINT8)value; | |
| } | |
| #endif // defined(CPU_EXTLIMIT) | |
| #if defined(SUPPORT_PC9821) | |
| else if ((address >= 0xfff00000) && (address < 0xfff80000)) { | |
| memvgaf_wr8(address, value); | |
| } | |
| #endif // defined(SUPPORT_PC9821) | |
| else { | else { |
| return(0xff); | // TRACEOUT(("out of mem (write8): %x", address)); |
| } | } |
| } | } |
| #endif | |
| else { | |
| return(memory_read[(address >> 15) & 0x1f](address)); | |
| } | |
| } | } |
| UINT16 MEMCALL i286_memoryread_w(UINT32 address) { | void MEMCALL memp_write16(UINT32 address, REG16 value) { |
| UINT16 ret; | |
| if (address < (I286_MEMREADMAX - 1)) { | if (address < (I286_MEMWRITEMAX - 1)) { |
| return(LOADINTELWORD(mem + address)); | STOREINTELWORD(mem + address, value); |
| } | } |
| #if defined(USE_HIMEM) | else if ((address + 1) & 0x7fff) { // non 32kb boundary |
| else if (address >= (0x10fff0 - 1)) { | address = address & CPU_ADRSMASK; |
| address -= 0x100000; | if (address < USE_HIMEM) { |
| if (address == (0x00fff0 - 1)) { | memfn0.wr16[address >> 15](address, value); |
| ret = mem[0x100000 + address]; | |
| } | } |
| else if (address < extmemmng_size) { | else if (address < CPU_EXTLIMIT16) { |
| ret = extmemmng_ptr[address]; | STOREINTELWORD(CPU_EXTMEMBASE + address, value); |
| } | } |
| else { | else if (address < 0x00f00000) { |
| ret = 0xff; | } |
| else if (address < 0x01000000) { | |
| memfnf.wr16[(address >> 17) & 7](address, value); | |
| } | } |
| address++; | #if defined(CPU_EXTLIMIT) |
| if (address < extmemmng_size) { | else if (address < CPU_EXTLIMIT) { |
| ret += extmemmng_ptr[address] << 8; | STOREINTELWORD(CPU_EXTMEMBASE + address, value); |
| } | } |
| #endif // defined(CPU_EXTLIMIT) | |
| #if defined(SUPPORT_PC9821) | |
| else if ((address >= 0xfff00000) && (address < 0xfff80000)) { | |
| memvgaf_wr16(address, value); | |
| } | |
| #endif // defined(SUPPORT_PC9821) | |
| else { | else { |
| ret += 0xff00; | // TRACEOUT(("out of mem (write16): %x", address)); |
| } | } |
| return(ret); | |
| } | |
| #endif | |
| else if ((address & 0x7fff) != 0x7fff) { | |
| return(memword_read[(address >> 15) & 0x1f](address)); | |
| } | } |
| else { | else { |
| ret = memory_read[(address >> 15) & 0x1f](address); | memp_write8(address + 0, (UINT8)value); |
| address++; | memp_write8(address + 1, (UINT8)(value >> 8)); |
| ret += memory_read[(address >> 15) & 0x1f](address) << 8; | |
| return(ret); | |
| } | } |
| } | } |
| void MEMCALL i286_memorywrite(UINT32 address, BYTE value) { | void MEMCALL memp_write32(UINT32 address, UINT32 value) { |
| if (address < I286_MEMWRITEMAX) { | UINT32 pos; |
| mem[address] = value; | |
| if (address < (I286_MEMWRITEMAX - 3)) { | |
| STOREINTELDWORD(mem + address, value); | |
| return; | |
| } | } |
| #if defined(USE_HIMEM) | else if (address >= USE_HIMEM) { |
| else if (address >= 0x10fff0) { | pos = address & CPU_ADRSMASK; |
| address -= 0x100000; | if ((pos >= USE_HIMEM) && ((pos + 3) < CPU_EXTLIMIT16)) { |
| if (address < extmemmng_size) { | STOREINTELDWORD(CPU_EXTMEMBASE + pos, value); |
| extmemmng_ptr[address] = value; | return; |
| } | } |
| } | } |
| #endif | if (!(address & 1)) { |
| memp_write16(address + 0, (UINT16)value); | |
| memp_write16(address + 2, (UINT16)(value >> 16)); | |
| } | |
| else { | else { |
| memory_write[(address >> 15) & 0x1f](address, value); | memp_write8(address + 0, (UINT8)value); |
| memp_write16(address + 1, (UINT16)(value >> 8)); | |
| memp_write8(address + 3, (UINT8)(value >> 24)); | |
| } | } |
| } | } |
| void MEMCALL i286_memorywrite_w(UINT32 address, UINT16 value) { | |
| if (address < (I286_MEMWRITEMAX - 1)) { | void MEMCALL memp_reads(UINT32 address, void *dat, UINT leng) { |
| STOREINTELWORD(mem + address, value); | |
| if ((address + leng) < I286_MEMREADMAX) { | |
| CopyMemory(dat, mem + address, leng); | |
| } | } |
| #if defined(USE_HIMEM) | else { |
| else if (address >= (0x10fff0 - 1)) { | UINT8 *out = (UINT8 *)dat; |
| address -= 0x100000; | if (address < I286_MEMREADMAX) { |
| if (address == (0x00fff0 - 1)) { | CopyMemory(out, mem + address, I286_MEMREADMAX - address); |
| mem[address] = (BYTE)value; | out += I286_MEMREADMAX - address; |
| } | leng -= I286_MEMREADMAX - address; |
| else if (address < extmemmng_size) { | address = I286_MEMREADMAX; |
| extmemmng_ptr[address] = (BYTE)value; | } |
| } | while(leng--) { |
| address++; | *out++ = memp_read8(address++); |
| if (address < extmemmng_size) { | |
| extmemmng_ptr[address] = (BYTE)(value >> 8); | |
| } | } |
| } | } |
| #endif | } |
| else if ((address & 0x7fff) != 0x7fff) { | |
| memword_write[(address >> 15) & 0x1f](address, value); | void MEMCALL memp_writes(UINT32 address, const void *dat, UINT leng) { |
| const UINT8 *out; | |
| if ((address + leng) < I286_MEMWRITEMAX) { | |
| CopyMemory(mem + address, dat, leng); | |
| } | } |
| else { | else { |
| memory_write[(address >> 15) & 0x1f](address, (BYTE)value); | out = (UINT8 *)dat; |
| address++; | if (address < I286_MEMWRITEMAX) { |
| memory_write[(address >> 15) & 0x1f](address, (BYTE)(value >> 8)); | CopyMemory(mem + address, out, I286_MEMWRITEMAX - address); |
| out += I286_MEMWRITEMAX - address; | |
| leng -= I286_MEMWRITEMAX - address; | |
| address = I286_MEMWRITEMAX; | |
| } | |
| while(leng--) { | |
| memp_write8(address++, *out++); | |
| } | |
| } | } |
| } | } |
| BYTE MEMCALL i286_membyte_read(UINT seg, UINT off) { | |
| // ---- Logical Space (BIOS) | |
| REG8 MEMCALL memr_read8(UINT seg, UINT off) { | |
| UINT32 address; | UINT32 address; |
| address = (seg << 4) + off; | address = (seg << 4) + LOW16(off); |
| if (address < I286_MEMREADMAX) { | if (address < I286_MEMREADMAX) { |
| return(mem[address]); | return(mem[address]); |
| } | } |
| else { | else { |
| return(i286_memoryread(address)); | return(memp_read8(address)); |
| } | } |
| } | } |
| UINT16 MEMCALL i286_memword_read(UINT seg, UINT off) { | REG16 MEMCALL memr_read16(UINT seg, UINT off) { |
| UINT32 address; | UINT32 address; |
| address = (seg << 4) + off; | address = (seg << 4) + LOW16(off); |
| if (address < (I286_MEMREADMAX - 1)) { | if (address < (I286_MEMREADMAX - 1)) { |
| return(LOADINTELWORD(mem + address)); | return(LOADINTELWORD(mem + address)); |
| } | } |
| else { | else { |
| return(i286_memoryread_w(address)); | return(memp_read16(address)); |
| } | } |
| } | } |
| void MEMCALL i286_membyte_write(UINT seg, UINT off, BYTE value) { | void MEMCALL memr_write8(UINT seg, UINT off, REG8 value) { |
| UINT32 address; | UINT32 address; |
| address = (seg << 4) + off; | address = (seg << 4) + LOW16(off); |
| if (address < I286_MEMWRITEMAX) { | if (address < I286_MEMWRITEMAX) { |
| mem[address] = value; | mem[address] = (UINT8)value; |
| } | } |
| else { | else { |
| i286_memorywrite(address, value); | memp_write8(address, value); |
| } | } |
| } | } |
| void MEMCALL i286_memword_write(UINT seg, UINT off, UINT16 value) { | void MEMCALL memr_write16(UINT seg, UINT off, REG16 value) { |
| UINT32 address; | UINT32 address; |
| address = (seg << 4) + off; | address = (seg << 4) + LOW16(off); |
| if (address < (I286_MEMWRITEMAX - 1)) { | if (address < (I286_MEMWRITEMAX - 1)) { |
| STOREINTELWORD(mem + address, value); | STOREINTELWORD(mem + address, value); |
| } | } |
| else { | else { |
| i286_memorywrite_w(address, value); | memp_write16(address, value); |
| } | } |
| } | } |
| void MEMCALL i286_memstr_read(UINT seg, UINT off, void *dat, UINT leng) { | void MEMCALL memr_reads(UINT seg, UINT off, void *dat, UINT leng) { |
| BYTE *out; | UINT8 *out; |
| UINT32 adrs; | UINT32 adrs; |
| UINT size; | UINT size; |
| out = (BYTE *)dat; | out = (UINT8 *)dat; |
| adrs = seg << 4; | adrs = seg << 4; |
| off = LOW16(off); | |
| if ((I286_MEMREADMAX >= 0x10000) && | if ((I286_MEMREADMAX >= 0x10000) && |
| (adrs < (I286_MEMREADMAX - 0x10000))) { | (adrs < (I286_MEMREADMAX - 0x10000))) { |
| if (leng) { | if (leng) { |
| Line 916 void MEMCALL i286_memstr_read(UINT seg, | Line 648 void MEMCALL i286_memstr_read(UINT seg, |
| } | } |
| else { | else { |
| while(leng--) { | while(leng--) { |
| *out++ = i286_memoryread(adrs + off); | *out++ = memp_read8(adrs + off); |
| off = (off + 1) & 0xffff; | off = LOW16(off + 1); |
| } | } |
| } | } |
| } | } |
| void MEMCALL i286_memstr_write(UINT seg, UINT off, | void MEMCALL memr_writes(UINT seg, UINT off, const void *dat, UINT leng) { |
| const void *dat, UINT leng) { | |
| BYTE *out; | UINT8 *out; |
| UINT32 adrs; | UINT32 adrs; |
| UINT size; | UINT size; |
| out = (BYTE *)dat; | out = (UINT8 *)dat; |
| adrs = seg << 4; | adrs = seg << 4; |
| off = LOW16(off); | |
| if ((I286_MEMWRITEMAX >= 0x10000) && | if ((I286_MEMWRITEMAX >= 0x10000) && |
| (adrs < (I286_MEMWRITEMAX - 0x10000))) { | (adrs < (I286_MEMWRITEMAX - 0x10000))) { |
| if (leng) { | if (leng) { |
| Line 954 void MEMCALL i286_memstr_write(UINT seg, | Line 686 void MEMCALL i286_memstr_write(UINT seg, |
| } | } |
| else { | else { |
| while(leng--) { | while(leng--) { |
| i286_memorywrite(adrs + off, *out++); | memp_write8(adrs + off, *out++); |
| off = (off + 1) & 0xffff; | off = LOW16(off + 1); |
| } | |
| } | |
| } | |
| void MEMCALL i286_memx_read(UINT32 address, void *dat, UINT leng) { | |
| if ((address + leng) < I286_MEMREADMAX) { | |
| CopyMemory(dat, mem + address, leng); | |
| } | |
| else { | |
| BYTE *out = (BYTE *)dat; | |
| if (address < I286_MEMREADMAX) { | |
| CopyMemory(out, mem + address, I286_MEMREADMAX - address); | |
| out += I286_MEMREADMAX - address; | |
| leng -= I286_MEMREADMAX - address; | |
| address = I286_MEMREADMAX; | |
| } | |
| while(leng--) { | |
| *out++ = i286_memoryread(address++); | |
| } | } |
| } | } |
| } | } |
| void MEMCALL i286_memx_write(UINT32 address, const void *dat, UINT leng) { | #endif |
| const BYTE *out; | |
| if ((address + leng) < I286_MEMWRITEMAX) { | |
| CopyMemory(mem + address, dat, leng); | |
| } | |
| else { | |
| out = (BYTE *)dat; | |
| if (address < I286_MEMWRITEMAX) { | |
| CopyMemory(mem + address, out, I286_MEMWRITEMAX - address); | |
| out += I286_MEMWRITEMAX - address; | |
| leng -= I286_MEMWRITEMAX - address; | |
| address = I286_MEMWRITEMAX; | |
| } | |
| while(leng--) { | |
| i286_memorywrite(address++, *out++); | |
| } | |
| } | |
| } | |