File:  [RetroPC.NET] / np2 / i386c / ia32 / debug.c
Revision 1.25: download - view: text, annotated - select for diffs
Mon Jun 18 23:11:56 2012 JST (13 years, 4 months ago) by monaka
Branches: MAIN
CVS tags: HEAD
avoid warning on LP64 arch.

/*
 * Copyright (c) 2002-2003 NONAKA Kimihiro
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "compiler.h"

#include "cpu.h"
#include "memory.h"
#if defined(USE_FPU)
#include "instructions/fpu/fp.h"
#endif


/*
 * register strings
 */
const char *reg8_str[CPU_REG_NUM] = {
	"al", "cl", "dl", "bl", "ah", "ch", "dh", "bh"
};

const char *reg16_str[CPU_REG_NUM] = { 
	"ax", "cx", "dx", "bx", "sp", "bp", "si", "di"
};

const char *reg32_str[CPU_REG_NUM] = { 
	"eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi"
};

const char *sreg_str[CPU_SEGREG_NUM] = {
	"es", "cs", "ss", "ds", "fs", "gs"
};


char *
cpu_reg2str(void)
{
	static char buf[512];

	snprintf(buf, sizeof(buf),
	    "eax=%08x ecx=%08x edx=%08x ebx=%08x\n"
	    "esp=%08x ebp=%08x esi=%08x edi=%08x\n"
	    "eip=%08x prev_eip=%08x\n"
	    "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x\n"
	    "eflag=%08x "
	    /* ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF */
	    "[ ID=%d VIP=%d VIF=%d AC=%d VM=%d RF=%d NT=%d IOPL=%d %s %s %s TF=%d %s %s %s %s %s ]\n"
	    "gdtr=%08x:%04x idtr=%08x:%04x\n"
	    "ldtr=%04x(%08x:%04x) tr=%04x(%08x:%04x)\n"
	    "cr0=%08x cr1=%08x cr2=%08x cr3=%08x cr4=%08x mxcsr=%08x",
	    CPU_EAX, CPU_ECX, CPU_EDX, CPU_EBX,
	    CPU_ESP, CPU_EBP,CPU_ESI, CPU_EDI,
	    CPU_EIP, CPU_PREV_EIP,
	    CPU_CS, CPU_SS, CPU_DS, CPU_ES, CPU_FS, CPU_GS,
	    CPU_EFLAG,
	    (CPU_EFLAG & ID_FLAG) != 0,
	    (CPU_EFLAG & VIP_FLAG) != 0,
	    (CPU_EFLAG & VIF_FLAG) != 0,
	    (CPU_EFLAG & AC_FLAG) != 0,
	    (CPU_EFLAG & VM_FLAG) != 0,
	    (CPU_EFLAG & RF_FLAG) != 0,
	    (CPU_EFLAG & NT_FLAG) != 0,
	    (int)((CPU_EFLAG >> 12) & 3),
	    CPU_OV ? "OV" : "NV",
	    CPU_EFLAG & D_FLAG ? "UP" : "DN",
	    CPU_EFLAG & I_FLAG ? "DI" : "EI",
	    (CPU_EFLAG & T_FLAG) != 0,
	    CPU_EFLAG & S_FLAG ? "NG" : "PL",
	    CPU_EFLAG & Z_FLAG ? "ZR" : "NZ",
	    CPU_EFLAG & A_FLAG ? "AC" : "NA",
	    CPU_EFLAG & P_FLAG ? "PE" : "PO",
	    CPU_EFLAG & C_FLAG ? "CY" : "NC",
	    CPU_GDTR_BASE, CPU_GDTR_LIMIT, CPU_IDTR_BASE, CPU_IDTR_LIMIT,
	    CPU_LDTR, CPU_LDTR_BASE, CPU_LDTR_LIMIT,
	      CPU_TR, CPU_TR_BASE, CPU_TR_LIMIT,
	    CPU_CR0, CPU_CR1, CPU_CR2, CPU_CR3, CPU_CR4, CPU_MXCSR);

	return buf;
}

static char *
a20str(void)
{
	static char buf[32];

	snprintf(buf, sizeof(buf), "a20line=%s\n",
	    (CPU_STAT_ADRSMASK == 0xffffffff) ? "enable" : "disable");
	return buf;
}

void
put_cpuinfo(void)
{
	char buf[2048];

	strcpy(buf, cpu_reg2str());
	strcat(buf, "\n");
#if defined(USE_FPU)
	strcat(buf, fpu_reg2str());
	strcat(buf, "\n");
#endif
	strcat(buf, a20str());

	printf("%s", buf);
}

void
dbg_printf(const char *str, ...)
{
	char buf[1024];
	va_list ap;

	va_start(ap, str);
	vsnprintf(buf, sizeof(buf), str, ap);
	va_end(ap);
	strcat(buf, "\n");

	printf("%s", buf);
}

void
memory_dump(int idx, UINT32 madr)
{
	UINT32 addr;
	UINT32 size;
	UINT32 s, i;
	UINT8 buf[16];
	UINT8 c;

	if (madr < 0x80) {
		size = madr + 0x80;
		addr = 0;
	} else {
		size = 0x100;
		addr = madr - 0x80;
	}
	VERBOSE(("memory dump\n--"));
	for (s = 0; s < size; s++) {
		if ((s % 16) == 0) {
			VERBOSE(("%08x: ", addr + s));
			memset(buf, '.', sizeof(buf));
		}

		c = cpu_vmemoryread(idx, addr + s);
		VERBOSE(("%02x ", c));
		if (c >= 0x20 && c <= 0x7e)
			buf[s % 16] = c;

		if ((s % 16) == 15) {
			VERBOSE(("| "));
			for (i = 0; i < sizeof(buf); i++)
				VERBOSE(("%c", buf[i]));
			VERBOSE(("\n"));
		}
	}
}

void
gdtr_dump(UINT32 base, UINT limit)
{
	UINT32 v[2];
	UINT i;

	VERBOSE(("GDTR_DUMP: GDTR_BASE = 0x%08x, GDTR_LIMIT = 0x%04x", base, limit));

	for (i = 0; i < limit; i += 8) {
		v[0] = cpu_kmemoryread_d(base + i);
		v[1] = cpu_kmemoryread_d(base + i + 4);
		VERBOSE(("GDTR_DUMP: %08x: %08x%08x", base + i, v[0], v[1]));
	}
}

void
ldtr_dump(UINT32 base, UINT limit)
{
	UINT32 v[2];
	UINT i;

	VERBOSE(("LDTR_DUMP: LDTR_BASE = 0x%08x, LDTR_LIMIT = 0x%04x", base, limit));

	for (i = 0; i < limit; i += 8) {
		v[0] = cpu_kmemoryread_d(base + i);
		v[1] = cpu_kmemoryread_d(base + i + 4);
		VERBOSE(("LDTR_DUMP: %08x: %08x%08x", base + i, v[0], v[1]));
	}
}

void
idtr_dump(UINT32 base, UINT limit)
{
	UINT32 v[2];
	UINT i;

	VERBOSE(("IDTR_DUMP: IDTR_BASE = 0x%08x, IDTR_LIMIT = 0x%04x", base, limit));

	for (i = 0; i < limit; i += 8) {
		v[0] = cpu_kmemoryread_d(base + i);
		v[1] = cpu_kmemoryread_d(base + i + 4);
		VERBOSE(("IDTR_DUMP: %08x: %08x%08x", base + i, v[0], v[1]));
	}
}

void
tr_dump(UINT16 selector, UINT32 base, UINT limit)
{
	UINT32 v;
	UINT i;

	VERBOSE(("TR_DUMP: selector = %04x", selector));

	for (i = 0; i < limit; i += 4) {
		v = cpu_kmemoryread_d(base + i);
		VERBOSE(("TR_DUMP: %08x: %08x", base + i, v));
	}
}

UINT32
pde_dump(UINT32 base, int idx)
{
	UINT32 paddr;
	UINT32 v;
	int i;

	if (idx < 0 && idx > -8192) {
		idx = -idx;
		VERBOSE(("PDE_DUMP: address = 0x%08x, num = %d", base, idx));
		for (i = 0; i < idx; i++) {
			paddr = (base & CPU_CR3_PD_MASK) | (idx << 2);
			v = cpu_memoryread_d(paddr);
			VERBOSE(("PDE_DUMP: 0x%08x: %08x", paddr, v));
		}
		paddr = 0;
	} else if (idx < 8192) {
		VERBOSE(("PDE_DUMP: address = 0x%08x", base));
		paddr = (base & CPU_CR3_PD_MASK) | (idx << 2);
		v = cpu_memoryread_d(paddr);
		VERBOSE(("PDE_DUMP: 0x%08x: %08x", paddr, v));
	} else {
		VERBOSE(("PDE_DUMP: invalid idx (%d)", idx));
		paddr = 0;
	}

	return paddr;
}

void
segdesc_dump(descriptor_t *sdp)
{
#if defined(DEBUG)
	const char *s;

	__ASSERT(sdp != NULL);

	VERBOSE(("dump descriptor: %p", sdp));

	VERBOSE(("valid    : %s", SEG_IS_VALID(sdp) ? "true" : "false"));
	VERBOSE(("present  : %s", SEG_IS_PRESENT(sdp) ? "true" : "false"));
	VERBOSE(("DPL      : %d", sdp->dpl));
	VERBOSE(("type     : %d", sdp->type));
	VERBOSE(("kind     : %s", SEG_IS_SYSTEM(sdp) ? "system" : "code/data"));
	if (!SEG_IS_SYSTEM(sdp)) {
		if (SEG_IS_CODE(sdp)) {
			VERBOSE(("type     : %dbit %sconforming code",
			    SEG_IS_32BIT(sdp) ? 32 : 16,
			    SEG_IS_CONFORMING_CODE(sdp) ? "" : "non-"));
			VERBOSE(("access   : execute%s",
			    SEG_IS_READABLE_CODE(sdp) ? "/read" : ""));
		} else {
			VERBOSE(("type     : %dbit expand-%s data",
			    SEG_IS_32BIT(sdp) ? 32 : 16,
			    SEG_IS_EXPANDDOWN_DATA(sdp) ? "down" : "up"));
			VERBOSE(("access   : read%s",
			    SEG_IS_WRITABLE_DATA(sdp) ? "/write" : ""));
		}
		VERBOSE(("4k scale : %s", sdp->u.seg.g ? "true" : "false"));
		VERBOSE(("baseadr  : 0x%08x", sdp->u.seg.segbase));
		VERBOSE(("limit    : 0x%08x", sdp->u.seg.limit));
	} else {
		switch (sdp->type) {
		case CPU_SYSDESC_TYPE_LDT:		/* LDT */
			VERBOSE(("type     : LDT"));
			VERBOSE(("4k scale : %s", sdp->u.seg.g ? "true" : "false"));
			VERBOSE(("baseadr  : 0x%08x", sdp->u.seg.segbase));
			VERBOSE(("limit    : 0x%08x", sdp->u.seg.limit));
			break;

		case CPU_SYSDESC_TYPE_TASK:		/* task gate */
			VERBOSE(("type     : task gate"));
			VERBOSE(("selector : 0x%04x", sdp->u.gate.selector));
			break;

		case CPU_SYSDESC_TYPE_TSS_16:		/* 286 TSS */
		case CPU_SYSDESC_TYPE_TSS_BUSY_16:	/* 286 Busy TSS */
		case CPU_SYSDESC_TYPE_TSS_32:		/* 386 TSS */
		case CPU_SYSDESC_TYPE_TSS_BUSY_32:	/* 386 Busy TSS */
			VERBOSE(("type     : %dbit %sTSS",
			    (sdp->type & CPU_SYSDESC_TYPE_32BIT) ? 32 : 16,
			    (sdp->type & CPU_SYSDESC_TYPE_TSS_BUSY_IND) ?
			      "Busy " : ""));
			VERBOSE(("4k scale : %s", sdp->u.seg.g ? "true" : "false"));
			VERBOSE(("baseadr  : 0x%08x", sdp->u.seg.segbase));
			VERBOSE(("limit    : 0x%08x", sdp->u.seg.limit));
			break;

		case CPU_SYSDESC_TYPE_CALL_16:		/* 286 call gate */
		case CPU_SYSDESC_TYPE_INTR_16:		/* 286 interrupt gate */
		case CPU_SYSDESC_TYPE_TRAP_16:		/* 286 trap gate */
		case CPU_SYSDESC_TYPE_CALL_32:		/* 386 call gate */
		case CPU_SYSDESC_TYPE_INTR_32:		/* 386 interrupt gate */
		case CPU_SYSDESC_TYPE_TRAP_32:		/* 386 trap gate */
			switch (sdp->type & CPU_SYSDESC_TYPE_MASKBIT) {
			case CPU_SYSDESC_TYPE_CALL:
				s = "call";
				break;

			case CPU_SYSDESC_TYPE_INTR:
				s = "interrupt";
				break;

			case CPU_SYSDESC_TYPE_TRAP:
				s = "trap";
				break;

			default:
				s = "unknown";
				break;
			}
			VERBOSE(("type     : %c86 %s gate",
			    (sdp->type & CPU_SYSDESC_TYPE_32BIT) ? '3':'2', s));
			VERBOSE(("selector : 0x%04x", sdp->u.gate.selector));
			VERBOSE(("offset   : 0x%08x", sdp->u.gate.offset));
			VERBOSE(("count    : %d", sdp->u.gate.count));
			break;

		case 0: case 8: case 10: case 13: /* reserved */
		default:
			VERBOSE(("type     : unknown descriptor"));
			break;
		}
	}
#endif
}

UINT32
convert_laddr_to_paddr(UINT32 laddr)
{
	UINT32 paddr;		/* physical address */
	UINT32 pde_addr;	/* page directory entry address */
	UINT32 pde;		/* page directory entry */
	UINT32 pte_addr;	/* page table entry address */
	UINT32 pte;		/* page table entry */

	pde_addr = (CPU_CR3 & CPU_CR3_PD_MASK) | ((laddr >> 20) & 0xffc);
	pde = cpu_memoryread_d(pde_addr);

	if ((CPU_CR4 & CPU_CR4_PSE) && (pde & CPU_PDE_PAGE_SIZE)) {
		/* 4MB page size */
		paddr = (pde & CPU_PDE_4M_BASEADDR_MASK) | (laddr & 0x003fffff);
	} else {
		/* 4KB page size */
		pte_addr = (pde & CPU_PDE_BASEADDR_MASK) | ((laddr >> 10) & 0xffc);
		pte = cpu_memoryread_d(pte_addr);
		paddr = (pte & CPU_PTE_BASEADDR_MASK) | (laddr & 0x00000fff);
	}
	return paddr;
}

UINT32
convert_vaddr_to_paddr(unsigned int idx, UINT32 offset)
{
	descriptor_t *sdp;
	UINT32 laddr;

	if (idx < CPU_SEGREG_NUM) {
		sdp = &CPU_STAT_SREG(idx);
		if (SEG_IS_VALID(sdp)) {
			laddr = CPU_STAT_SREGBASE(idx) + offset;
			return convert_laddr_to_paddr(laddr);
		}
	}
	return 0;
}

RetroPC.NET-CVS <cvs@retropc.net>