/*
* Copyright (c) 2002-2003 NONAKA Kimihiro
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "compiler.h"
#include "cpu.h"
#include "memory.h"
#if defined(USE_FPU)
#include "instructions/fpu/fp.h"
#endif
/*
* register strings
*/
const char *reg8_str[CPU_REG_NUM] = {
"al", "cl", "dl", "bl", "ah", "ch", "dh", "bh"
};
const char *reg16_str[CPU_REG_NUM] = {
"ax", "cx", "dx", "bx", "sp", "bp", "si", "di"
};
const char *reg32_str[CPU_REG_NUM] = {
"eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi"
};
const char *sreg_str[CPU_SEGREG_NUM] = {
"es", "cs", "ss", "ds", "fs", "gs"
};
char *
cpu_reg2str(void)
{
static char buf[512];
snprintf(buf, sizeof(buf),
"eax=%08x ecx=%08x edx=%08x ebx=%08x\n"
"esp=%08x ebp=%08x esi=%08x edi=%08x\n"
"eip=%08x prev_eip=%08x\n"
"cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x\n"
"eflag=%08x "
/* ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF */
"[ ID=%d VIP=%d VIF=%d AC=%d VM=%d RF=%d NT=%d IOPL=%d %s %s %s TF=%d %s %s %s %s %s ]\n"
"gdtr=%08x:%04x idtr=%08x:%04x\n"
"ldtr=%04x(%08x:%04x) tr=%04x(%08x:%04x)\n"
"cr0=%08x cr1=%08x cr2=%08x cr3=%08x cr4=%08x mxcsr=%08x",
CPU_EAX, CPU_ECX, CPU_EDX, CPU_EBX,
CPU_ESP, CPU_EBP,CPU_ESI, CPU_EDI,
CPU_EIP, CPU_PREV_EIP,
CPU_CS, CPU_SS, CPU_DS, CPU_ES, CPU_FS, CPU_GS,
CPU_EFLAG,
(CPU_EFLAG & ID_FLAG) != 0,
(CPU_EFLAG & VIP_FLAG) != 0,
(CPU_EFLAG & VIF_FLAG) != 0,
(CPU_EFLAG & AC_FLAG) != 0,
(CPU_EFLAG & VM_FLAG) != 0,
(CPU_EFLAG & RF_FLAG) != 0,
(CPU_EFLAG & NT_FLAG) != 0,
(int)((CPU_EFLAG >> 12) & 3),
CPU_OV ? "OV" : "NV",
CPU_EFLAG & D_FLAG ? "UP" : "DN",
CPU_EFLAG & I_FLAG ? "DI" : "EI",
(CPU_EFLAG & T_FLAG) != 0,
CPU_EFLAG & S_FLAG ? "NG" : "PL",
CPU_EFLAG & Z_FLAG ? "ZR" : "NZ",
CPU_EFLAG & A_FLAG ? "AC" : "NA",
CPU_EFLAG & P_FLAG ? "PE" : "PO",
CPU_EFLAG & C_FLAG ? "CY" : "NC",
CPU_GDTR_BASE, CPU_GDTR_LIMIT, CPU_IDTR_BASE, CPU_IDTR_LIMIT,
CPU_LDTR, CPU_LDTR_BASE, CPU_LDTR_LIMIT,
CPU_TR, CPU_TR_BASE, CPU_TR_LIMIT,
CPU_CR0, CPU_CR1, CPU_CR2, CPU_CR3, CPU_CR4, CPU_MXCSR);
return buf;
}
static char *
a20str(void)
{
static char buf[32];
snprintf(buf, sizeof(buf), "a20line=%s\n",
(CPU_STAT_ADRSMASK == 0xffffffff) ? "enable" : "disable");
return buf;
}
void
put_cpuinfo(void)
{
char buf[2048];
strcpy(buf, cpu_reg2str());
strcat(buf, "\n");
#if defined(USE_FPU)
strcat(buf, fpu_reg2str());
strcat(buf, "\n");
#endif
strcat(buf, a20str());
printf("%s", buf);
}
void
dbg_printf(const char *str, ...)
{
char buf[1024];
va_list ap;
va_start(ap, str);
vsnprintf(buf, sizeof(buf), str, ap);
va_end(ap);
strcat(buf, "\n");
printf("%s", buf);
}
void
memory_dump(int idx, UINT32 madr)
{
UINT32 addr;
UINT32 size;
UINT32 s, i;
UINT8 buf[16];
UINT8 c;
if (madr < 0x80) {
size = madr + 0x80;
addr = 0;
} else {
size = 0x100;
addr = madr - 0x80;
}
VERBOSE(("memory dump\n--"));
for (s = 0; s < size; s++) {
if ((s % 16) == 0) {
VERBOSE(("%08x: ", addr + s));
memset(buf, '.', sizeof(buf));
}
c = cpu_vmemoryread(idx, addr + s);
VERBOSE(("%02x ", c));
if (c >= 0x20 && c <= 0x7e)
buf[s % 16] = c;
if ((s % 16) == 15) {
VERBOSE(("| "));
for (i = 0; i < sizeof(buf); i++)
VERBOSE(("%c", buf[i]));
VERBOSE(("\n"));
}
}
}
void
gdtr_dump(UINT32 base, UINT limit)
{
UINT32 v[2];
UINT i;
VERBOSE(("GDTR_DUMP: GDTR_BASE = 0x%08x, GDTR_LIMIT = 0x%04x", base, limit));
for (i = 0; i < limit; i += 8) {
v[0] = cpu_kmemoryread_d(base + i);
v[1] = cpu_kmemoryread_d(base + i + 4);
VERBOSE(("GDTR_DUMP: %08x: %08x%08x", base + i, v[0], v[1]));
}
}
void
ldtr_dump(UINT32 base, UINT limit)
{
UINT32 v[2];
UINT i;
VERBOSE(("LDTR_DUMP: LDTR_BASE = 0x%08x, LDTR_LIMIT = 0x%04x", base, limit));
for (i = 0; i < limit; i += 8) {
v[0] = cpu_kmemoryread_d(base + i);
v[1] = cpu_kmemoryread_d(base + i + 4);
VERBOSE(("LDTR_DUMP: %08x: %08x%08x", base + i, v[0], v[1]));
}
}
void
idtr_dump(UINT32 base, UINT limit)
{
UINT32 v[2];
UINT i;
VERBOSE(("IDTR_DUMP: IDTR_BASE = 0x%08x, IDTR_LIMIT = 0x%04x", base, limit));
for (i = 0; i < limit; i += 8) {
v[0] = cpu_kmemoryread_d(base + i);
v[1] = cpu_kmemoryread_d(base + i + 4);
VERBOSE(("IDTR_DUMP: %08x: %08x%08x", base + i, v[0], v[1]));
}
}
void
tr_dump(UINT16 selector, UINT32 base, UINT limit)
{
UINT32 v;
UINT i;
VERBOSE(("TR_DUMP: selector = %04x", selector));
for (i = 0; i < limit; i += 4) {
v = cpu_kmemoryread_d(base + i);
VERBOSE(("TR_DUMP: %08x: %08x", base + i, v));
}
}
UINT32
pde_dump(UINT32 base, int idx)
{
UINT32 paddr;
UINT32 v;
int i;
if (idx < 0 && idx > -8192) {
idx = -idx;
VERBOSE(("PDE_DUMP: address = 0x%08x, num = %d", base, idx));
for (i = 0; i < idx; i++) {
paddr = (base & CPU_CR3_PD_MASK) | (idx << 2);
v = cpu_memoryread_d(paddr);
VERBOSE(("PDE_DUMP: 0x%08x: %08x", paddr, v));
}
paddr = 0;
} else if (idx < 8192) {
VERBOSE(("PDE_DUMP: address = 0x%08x", base));
paddr = (base & CPU_CR3_PD_MASK) | (idx << 2);
v = cpu_memoryread_d(paddr);
VERBOSE(("PDE_DUMP: 0x%08x: %08x", paddr, v));
} else {
VERBOSE(("PDE_DUMP: invalid idx (%d)", idx));
paddr = 0;
}
return paddr;
}
void
segdesc_dump(descriptor_t *sdp)
{
#if defined(DEBUG)
const char *s;
__ASSERT(sdp != NULL);
VERBOSE(("dump descriptor: %p", sdp));
VERBOSE(("valid : %s", SEG_IS_VALID(sdp) ? "true" : "false"));
VERBOSE(("present : %s", SEG_IS_PRESENT(sdp) ? "true" : "false"));
VERBOSE(("DPL : %d", sdp->dpl));
VERBOSE(("type : %d", sdp->type));
VERBOSE(("kind : %s", SEG_IS_SYSTEM(sdp) ? "system" : "code/data"));
if (!SEG_IS_SYSTEM(sdp)) {
if (SEG_IS_CODE(sdp)) {
VERBOSE(("type : %dbit %sconforming code",
SEG_IS_32BIT(sdp) ? 32 : 16,
SEG_IS_CONFORMING_CODE(sdp) ? "" : "non-"));
VERBOSE(("access : execute%s",
SEG_IS_READABLE_CODE(sdp) ? "/read" : ""));
} else {
VERBOSE(("type : %dbit expand-%s data",
SEG_IS_32BIT(sdp) ? 32 : 16,
SEG_IS_EXPANDDOWN_DATA(sdp) ? "down" : "up"));
VERBOSE(("access : read%s",
SEG_IS_WRITABLE_DATA(sdp) ? "/write" : ""));
}
VERBOSE(("4k scale : %s", sdp->u.seg.g ? "true" : "false"));
VERBOSE(("baseadr : 0x%08x", sdp->u.seg.segbase));
VERBOSE(("limit : 0x%08x", sdp->u.seg.limit));
} else {
switch (sdp->type) {
case CPU_SYSDESC_TYPE_LDT: /* LDT */
VERBOSE(("type : LDT"));
VERBOSE(("4k scale : %s", sdp->u.seg.g ? "true" : "false"));
VERBOSE(("baseadr : 0x%08x", sdp->u.seg.segbase));
VERBOSE(("limit : 0x%08x", sdp->u.seg.limit));
break;
case CPU_SYSDESC_TYPE_TASK: /* task gate */
VERBOSE(("type : task gate"));
VERBOSE(("selector : 0x%04x", sdp->u.gate.selector));
break;
case CPU_SYSDESC_TYPE_TSS_16: /* 286 TSS */
case CPU_SYSDESC_TYPE_TSS_BUSY_16: /* 286 Busy TSS */
case CPU_SYSDESC_TYPE_TSS_32: /* 386 TSS */
case CPU_SYSDESC_TYPE_TSS_BUSY_32: /* 386 Busy TSS */
VERBOSE(("type : %dbit %sTSS",
(sdp->type & CPU_SYSDESC_TYPE_32BIT) ? 32 : 16,
(sdp->type & CPU_SYSDESC_TYPE_TSS_BUSY_IND) ?
"Busy " : ""));
VERBOSE(("4k scale : %s", sdp->u.seg.g ? "true" : "false"));
VERBOSE(("baseadr : 0x%08x", sdp->u.seg.segbase));
VERBOSE(("limit : 0x%08x", sdp->u.seg.limit));
break;
case CPU_SYSDESC_TYPE_CALL_16: /* 286 call gate */
case CPU_SYSDESC_TYPE_INTR_16: /* 286 interrupt gate */
case CPU_SYSDESC_TYPE_TRAP_16: /* 286 trap gate */
case CPU_SYSDESC_TYPE_CALL_32: /* 386 call gate */
case CPU_SYSDESC_TYPE_INTR_32: /* 386 interrupt gate */
case CPU_SYSDESC_TYPE_TRAP_32: /* 386 trap gate */
switch (sdp->type & CPU_SYSDESC_TYPE_MASKBIT) {
case CPU_SYSDESC_TYPE_CALL:
s = "call";
break;
case CPU_SYSDESC_TYPE_INTR:
s = "interrupt";
break;
case CPU_SYSDESC_TYPE_TRAP:
s = "trap";
break;
default:
s = "unknown";
break;
}
VERBOSE(("type : %c86 %s gate",
(sdp->type & CPU_SYSDESC_TYPE_32BIT) ? '3':'2', s));
VERBOSE(("selector : 0x%04x", sdp->u.gate.selector));
VERBOSE(("offset : 0x%08x", sdp->u.gate.offset));
VERBOSE(("count : %d", sdp->u.gate.count));
break;
case 0: case 8: case 10: case 13: /* reserved */
default:
VERBOSE(("type : unknown descriptor"));
break;
}
}
#endif
}
UINT32
convert_laddr_to_paddr(UINT32 laddr)
{
UINT32 paddr; /* physical address */
UINT32 pde_addr; /* page directory entry address */
UINT32 pde; /* page directory entry */
UINT32 pte_addr; /* page table entry address */
UINT32 pte; /* page table entry */
pde_addr = (CPU_CR3 & CPU_CR3_PD_MASK) | ((laddr >> 20) & 0xffc);
pde = cpu_memoryread_d(pde_addr);
if ((CPU_CR4 & CPU_CR4_PSE) && (pde & CPU_PDE_PAGE_SIZE)) {
/* 4MB page size */
paddr = (pde & CPU_PDE_4M_BASEADDR_MASK) | (laddr & 0x003fffff);
} else {
/* 4KB page size */
pte_addr = (pde & CPU_PDE_BASEADDR_MASK) | ((laddr >> 10) & 0xffc);
pte = cpu_memoryread_d(pte_addr);
paddr = (pte & CPU_PTE_BASEADDR_MASK) | (laddr & 0x00000fff);
}
return paddr;
}
UINT32
convert_vaddr_to_paddr(unsigned int idx, UINT32 offset)
{
descriptor_t *sdp;
UINT32 laddr;
if (idx < CPU_SEGREG_NUM) {
sdp = &CPU_STAT_SREG(idx);
if (SEG_IS_VALID(sdp)) {
laddr = CPU_STAT_SREGBASE(idx) + offset;
return convert_laddr_to_paddr(laddr);
}
}
return 0;
}
RetroPC.NET-CVS <cvs@retropc.net>