/* $Id: task.c,v 1.15 2004/03/02 16:30:43 monaka Exp $ */
/*
* Copyright (c) 2003 NONAKA Kimihiro
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "compiler.h"
#include "cpu.h"
#include "ia32.mcr"
void
load_tr(UINT16 selector)
{
selector_t task_sel;
int rv;
UINT16 iobase;
rv = parse_selector(&task_sel, selector);
if (rv < 0 || task_sel.ldt || task_sel.desc.s) {
EXCEPTION(GP_EXCEPTION, task_sel.idx);
}
/* check descriptor type & stack room size */
switch (task_sel.desc.type) {
case CPU_SYSDESC_TYPE_TSS_16:
if (task_sel.desc.u.seg.limit < 0x2b) {
EXCEPTION(TS_EXCEPTION, task_sel.idx);
}
iobase = 0;
break;
case CPU_SYSDESC_TYPE_TSS_32:
if (task_sel.desc.u.seg.limit < 0x67) {
EXCEPTION(TS_EXCEPTION, task_sel.idx);
}
iobase = cpu_kmemoryread_w(task_sel.desc.u.seg.segbase + 102);
break;
default:
EXCEPTION(GP_EXCEPTION, task_sel.idx);
iobase = 0; /* compiler happy */
break;
}
/* not present */
rv = selector_is_not_present(&task_sel);
if (rv < 0) {
EXCEPTION(NP_EXCEPTION, task_sel.idx);
}
#if defined(MORE_DEBUG)
tr_dump(task_sel.selector, task_sel.desc.u.seg.segbase, task_sel.desc.u.seg.limit);
#endif
CPU_SET_TASK_BUSY(task_sel.selector, &task_sel.desc);
CPU_TR = task_sel.selector;
CPU_TR_DESC = task_sel.desc;
/* I/O deny bitmap */
if (task_sel.desc.type == CPU_SYSDESC_TYPE_TSS_BUSY_32) {
if (iobase != 0 && iobase < task_sel.desc.u.seg.limit) {
CPU_STAT_IOLIMIT = (UINT16)(task_sel.desc.u.seg.limit - iobase);
CPU_STAT_IOADDR = task_sel.desc.u.seg.segbase + iobase;
} else {
CPU_STAT_IOLIMIT = 0;
}
} else {
CPU_STAT_IOLIMIT = 0;
}
}
void
get_stack_pointer_from_tss(UINT pl, UINT16 *new_ss, UINT32 *new_esp)
{
UINT32 tss_stack_addr;
__ASSERT(pl < 3);
if (CPU_TR_DESC.type == CPU_SYSDESC_TYPE_TSS_BUSY_32) {
tss_stack_addr = pl * 8 + 4;
if (tss_stack_addr + 7 > CPU_TR_DESC.u.seg.limit) {
EXCEPTION(TS_EXCEPTION, CPU_TR & ~3);
}
tss_stack_addr += CPU_TR_DESC.u.seg.segbase;
*new_esp = cpu_kmemoryread_d(tss_stack_addr);
*new_ss = cpu_kmemoryread_w(tss_stack_addr + 4);
} else if (CPU_TR_DESC.type == CPU_SYSDESC_TYPE_TSS_BUSY_16) {
tss_stack_addr = pl * 4 + 2;
if (tss_stack_addr + 3 > CPU_TR_DESC.u.seg.limit) {
EXCEPTION(TS_EXCEPTION, CPU_TR & ~3);
}
tss_stack_addr += CPU_TR_DESC.u.seg.segbase;
*new_esp = cpu_kmemoryread_w(tss_stack_addr);
*new_ss = cpu_kmemoryread_w(tss_stack_addr + 2);
} else {
ia32_panic("get_stack_pointer_from_tss: task register is invalid (%d)\n", CPU_TR_DESC.type);
}
VERBOSE(("get_stack_pointer_from_tss: pl = %d, new_esp = 0x%08x, new_ss = 0x%04x", pl, *new_esp, *new_ss));
}
UINT16
get_backlink_selector_from_tss(void)
{
UINT16 backlink;
if (CPU_TR_DESC.type == CPU_SYSDESC_TYPE_TSS_BUSY_32) {
if (4 > CPU_TR_DESC.u.seg.limit) {
EXCEPTION(TS_EXCEPTION, CPU_TR & ~3);
}
} else if (CPU_TR_DESC.type == CPU_SYSDESC_TYPE_TSS_BUSY_16) {
if (2 > CPU_TR_DESC.u.seg.limit) {
EXCEPTION(TS_EXCEPTION, CPU_TR & ~3);
}
} else {
ia32_panic("get_backlink_selector_from_tss: task register is invalid (%d)\n", CPU_TR_DESC.type);
}
backlink = cpu_kmemoryread_w(CPU_TR_DESC.u.seg.segbase);
VERBOSE(("get_backlink_selector_from_tss: backlink selector = 0x%04x", backlink));
return backlink;
}
void
task_switch(selector_t *task_sel, task_switch_type_t type)
{
UINT32 regs[CPU_REG_NUM];
UINT32 eip;
UINT32 new_flags;
UINT32 mask;
UINT32 cr3 = 0;
UINT16 sreg[CPU_SEGREG_NUM];
UINT16 ldtr;
UINT16 t, iobase;
selector_t cs_sel;
int rv;
UINT32 cur_base; /* current task state */
UINT32 task_base; /* new task state */
UINT32 old_flags = REAL_EFLAGREG;
BOOL task16;
UINT nsreg;
UINT i;
VERBOSE(("task_switch: start"));
/* limit check */
switch (task_sel->desc.type) {
case CPU_SYSDESC_TYPE_TSS_32:
case CPU_SYSDESC_TYPE_TSS_BUSY_32:
if (task_sel->desc.u.seg.limit < 0x67) {
EXCEPTION(TS_EXCEPTION, task_sel->idx);
}
task16 = FALSE;
nsreg = CPU_SEGREG_NUM;
break;
case CPU_SYSDESC_TYPE_TSS_16:
case CPU_SYSDESC_TYPE_TSS_BUSY_16:
if (task_sel->desc.u.seg.limit < 0x2b) {
EXCEPTION(TS_EXCEPTION, task_sel->idx);
}
task16 = TRUE;
nsreg = CPU_SEGREG286_NUM;
break;
default:
ia32_panic("task_switch: descriptor type is invalid.");
task16 = FALSE; /* compiler happy */
nsreg = CPU_SEGREG_NUM; /* compiler happy */
break;
}
cur_base = CPU_TR_DESC.u.seg.segbase;
task_base = task_sel->desc.u.seg.segbase;
VERBOSE(("task_switch: cur task (%04x) = 0x%08x:%08x", CPU_TR, cur_base, CPU_TR_DESC.u.seg.limit));
VERBOSE(("task_switch: new task (%04x) = 0x%08x:%08x", task_sel->selector, task_base, task_sel->desc.u.seg.limit));
VERBOSE(("task_switch: %dbit task switch", task16 ? 16 : 32));
#if defined(MORE_DEBUG)
{
UINT32 v;
VERBOSE(("task_switch: new task"));
for (i = 0; i < task_sel->desc.u.seg.limit; i += 4) {
v = cpu_kmemoryread_d(task_base + i);
VERBOSE(("task_switch: 0x%08x: %08x", task_base + i,v));
}
}
#endif
if (CPU_STAT_PAGING) {
/* task state paging check */
paging_check(cur_base, CPU_TR_DESC.u.seg.limit, CPU_PAGE_WRITE_DATA, CPU_MODE_SUPERVISER);
paging_check(task_base, task_sel->desc.u.seg.limit, CPU_PAGE_WRITE_DATA, CPU_MODE_SUPERVISER);
}
/* load task state */
memset(sreg, 0, sizeof(sreg));
if (!task16) {
if (CPU_STAT_PAGING) {
cr3 = cpu_kmemoryread_d(task_base + 28);
}
eip = cpu_kmemoryread_d(task_base + 32);
new_flags = cpu_kmemoryread_d(task_base + 36);
for (i = 0; i < CPU_REG_NUM; i++) {
regs[i] = cpu_kmemoryread_d(task_base + 40 + i * 4);
}
for (i = 0; i < nsreg; i++) {
sreg[i] = cpu_kmemoryread_w(task_base + 72 + i * 4);
}
ldtr = cpu_kmemoryread_w(task_base + 96);
t = cpu_kmemoryread_w(task_base + 100);
t &= 1;
iobase = cpu_kmemoryread_w(task_base + 102);
} else {
eip = cpu_kmemoryread_w(task_base + 14);
new_flags = cpu_kmemoryread_w(task_base + 16);
for (i = 0; i < CPU_REG_NUM; i++) {
regs[i] = cpu_kmemoryread_w(task_base + 18 + i * 2);
}
for (i = 0; i < nsreg; i++) {
sreg[i] = cpu_kmemoryread_w(task_base + 34 + i * 2);
}
ldtr = cpu_kmemoryread_w(task_base + 42);
t = 0;
iobase = 0;
}
#if defined(DEBUG)
VERBOSE(("task_switch: current task"));
VERBOSE(("task_switch: eip = 0x%08x", CPU_EIP));
VERBOSE(("task_switch: eflags = 0x%08x", old_flags));
for (i = 0; i < CPU_REG_NUM; i++) {
VERBOSE(("task_switch: regs[%d] = 0x%08x", i, CPU_REGS_DWORD(i)));
}
for (i = 0; i < nsreg; i++) {
VERBOSE(("task_switch: sreg[%d] = 0x%04x", i, CPU_REGS_SREG(i)));
}
VERBOSE(("task_switch: new task"));
if (!task16) {
VERBOSE(("task_switch: CR3 = 0x%08x", cr3));
}
VERBOSE(("task_switch: eip = 0x%08x", eip));
VERBOSE(("task_switch: eflags = 0x%08x", new_flags));
for (i = 0; i < CPU_REG_NUM; i++) {
VERBOSE(("task_switch: regs[%d] = 0x%08x", i, regs[i]));
}
for (i = 0; i < nsreg; i++) {
VERBOSE(("task_switch: sreg[%d] = 0x%04x", i, sreg[i]));
}
VERBOSE(("task_switch: ldtr = 0x%04x", ldtr));
if (!task16) {
VERBOSE(("task_switch: t = 0x%04x", t));
VERBOSE(("task_switch: iobase = 0x%04x", iobase));
}
#endif
/* if IRET or JMP, clear busy flag in this task: need */
/* if IRET, clear NT_FLAG in current EFLAG: need */
switch (type) {
case TASK_SWITCH_IRET:
/* clear NT_FLAG */
old_flags &= ~NT_FLAG;
/*FALLTHROUGH*/
case TASK_SWITCH_JMP:
/* clear busy flags in current task */
CPU_SET_TASK_FREE(CPU_TR, &CPU_TR_DESC);
break;
case TASK_SWITCH_CALL:
case TASK_SWITCH_INTR:
/* Nothing to do */
break;
default:
ia32_panic("task_switch(): task switch type is invalid");
break;
}
/* save this task state in this task state segment */
if (!task16) {
cpu_kmemorywrite_d(cur_base + 32, CPU_EIP);
cpu_kmemorywrite_d(cur_base + 36, old_flags);
for (i = 0; i < CPU_REG_NUM; i++) {
cpu_kmemorywrite_d(cur_base + 40 + i * 4, CPU_REGS_DWORD(i));
}
for (i = 0; i < nsreg; i++) {
cpu_kmemorywrite_w(cur_base + 72 + i * 4, CPU_REGS_SREG(i));
}
} else {
cpu_kmemorywrite_w(cur_base + 14, CPU_IP);
cpu_kmemorywrite_w(cur_base + 16, (UINT16)old_flags);
for (i = 0; i < CPU_REG_NUM; i++) {
cpu_kmemorywrite_w(cur_base + 18 + i * 2, CPU_REGS_WORD(i));
}
for (i = 0; i < nsreg; i++) {
cpu_kmemorywrite_w(cur_base + 34 + i * 2, CPU_REGS_SREG(i));
}
}
#if defined(MORE_DEBUG)
{
UINT32 v;
VERBOSE(("task_switch: current task"));
for (i = 0; i < CPU_TR_DESC.u.seg.limit; i += 4) {
v = cpu_kmemoryread_d(cur_base + i);
VERBOSE(("task_switch: 0x%08x: %08x", cur_base + i, v));
}
}
#endif
/* set back link selector */
switch (type) {
case TASK_SWITCH_CALL:
case TASK_SWITCH_INTR:
/* set back link selector */
cpu_kmemorywrite_w(task_base, CPU_TR);
break;
case TASK_SWITCH_IRET:
case TASK_SWITCH_JMP:
/* Nothing to do */
break;
default:
ia32_panic("task_switch(): task switch type is invalid");
break;
}
/* Now task switching! */
/* if CALL, INTR, set EFLAGS image NT_FLAG */
/* if CALL, INTR, JMP set busy flag */
switch (type) {
case TASK_SWITCH_CALL:
case TASK_SWITCH_INTR:
/* set back link selector */
new_flags |= NT_FLAG;
/*FALLTHROUGH*/
case TASK_SWITCH_JMP:
CPU_SET_TASK_BUSY(task_sel->selector, &task_sel->desc);
break;
case TASK_SWITCH_IRET:
/* check busy flag is active */
if (task_sel->desc.valid) {
UINT32 h;
h = cpu_kmemoryread_d(task_sel->addr + 4);
if ((h & CPU_TSS_H_BUSY) == 0) {
ia32_panic("task_switch: new task is not busy");
}
}
break;
default:
ia32_panic("task_switch(): task switch type is invalid");
break;
}
/* set CR0 image CPU_CR0_TS */
CPU_CR0 |= CPU_CR0_TS;
/* load task selector to CPU_TR */
CPU_TR = task_sel->selector;
CPU_TR_DESC = task_sel->desc;
/* load task state (CR3, EFLAG, EIP, GPR, segreg, LDTR) */
/* set new CR3 */
if (!task16 && CPU_STAT_PAGING) {
set_CR3(cr3);
}
/* set new EIP, GPR */
CPU_PREV_EIP = CPU_EIP = eip;
for (i = 0; i < CPU_REG_NUM; i++) {
CPU_REGS_DWORD(i) = regs[i];
}
for (i = 0; i < CPU_SEGREG_NUM; i++) {
CPU_REGS_SREG(i) = sreg[i];
CPU_STAT_SREG_INIT(i);
}
/* set new EFLAGS */
mask = I_FLAG|IOPL_FLAG|RF_FLAG|VM_FLAG|VIF_FLAG|VIP_FLAG;
set_eflags(new_flags, mask);
/* load new LDTR */
load_ldtr(ldtr, TS_EXCEPTION);
/* set new segment register */
if (!CPU_STAT_VM86) {
/* clear segment descriptor cache */
for (i = 0; i < CPU_SEGREG_NUM; i++) {
CPU_STAT_SREG_CLEAR(i);
}
/* load CS */
rv = parse_selector(&cs_sel, sreg[CPU_CS_INDEX]);
if (rv < 0) {
VERBOSE(("task_switch: load CS failure (sel = 0x%04x, rv = %d)", sreg[CPU_CS_INDEX], rv));
EXCEPTION(TS_EXCEPTION, cs_sel.idx);
}
/* CS register must be code segment */
if (!cs_sel.desc.s || !cs_sel.desc.u.seg.c) {
EXCEPTION(TS_EXCEPTION, cs_sel.idx);
}
/* check privilege level */
if (!cs_sel.desc.u.seg.ec) {
/* non-confirming code segment */
if (cs_sel.desc.dpl != cs_sel.rpl) {
EXCEPTION(TS_EXCEPTION, cs_sel.idx);
}
} else {
/* confirming code segment */
if (cs_sel.desc.dpl < cs_sel.rpl) {
EXCEPTION(TS_EXCEPTION, cs_sel.idx);
}
}
/* code segment is not present */
rv = selector_is_not_present(&cs_sel);
if (rv < 0) {
EXCEPTION(NP_EXCEPTION, cs_sel.idx);
}
/* Now loading CS register */
load_cs(cs_sel.selector, &cs_sel.desc, cs_sel.desc.dpl);
/* load ES, SS, DS, FS, GS segment register */
for (i = 0; i < CPU_SEGREG_NUM; i++) {
if (i != CPU_CS_INDEX) {
load_segreg(i, sreg[i], TS_EXCEPTION);
}
}
}
/* I/O deny bitmap */
if (!task16) {
if (iobase != 0 && iobase < task_sel->desc.u.seg.limit) {
CPU_STAT_IOLIMIT = (UINT16)(task_sel->desc.u.seg.limit - iobase);
CPU_STAT_IOADDR = task_sel->desc.u.seg.segbase + iobase;
} else {
CPU_STAT_IOLIMIT = 0;
}
} else {
CPU_STAT_IOLIMIT = 0;
}
VERBOSE(("task_switch: ioaddr = %08x, limit = %08x", CPU_STAT_IOADDR, CPU_STAT_IOLIMIT));
/* out of range */
if (CPU_EIP > CPU_STAT_CS_LIMIT) {
VERBOSE(("task_switch: new_ip is out of range. new_ip = %08x, limit = %08x", CPU_EIP, CPU_STAT_CS_LIMIT));
EXCEPTION(GP_EXCEPTION, 0);
}
VERBOSE(("task_switch: done."));
}
RetroPC.NET-CVS <cvs@retropc.net>