#include "compiler.h"
#ifndef NP2_MEMORY_ASM
#include "cpucore.h"
#include "pccore.h"
#include "iocore.h"
#include "memtram.h"
#include "memvram.h"
#include "memegc.h"
#if defined(SUPPORT_PC9821)
#include "memvga.h"
#endif
#include "memems.h"
#include "memepp.h"
#include "vram.h"
#include "font.h"
UINT8 mem[0x200000];
typedef void (MEMCALL * MEM8WRITE)(UINT32 address, REG8 value);
typedef REG8 (MEMCALL * MEM8READ)(UINT32 address);
typedef void (MEMCALL * MEM16WRITE)(UINT32 address, REG16 value);
typedef REG16 (MEMCALL * MEM16READ)(UINT32 address);
// ---- MAIN
static REG8 MEMCALL memmain_rd8(UINT32 address) {
return(mem[address]);
}
static REG16 MEMCALL memmain_rd16(UINT32 address) {
const UINT8 *ptr;
ptr = mem + address;
return(LOADINTELWORD(ptr));
}
static void MEMCALL memmain_wr8(UINT32 address, REG8 value) {
mem[address] = (UINT8)value;
}
static void MEMCALL memmain_wr16(UINT32 address, REG16 value) {
UINT8 *ptr;
ptr = mem + address;
STOREINTELWORD(ptr, value);
}
// ---- N/C
static REG8 MEMCALL memnc_rd8(UINT32 address) {
(void)address;
return(0xff);
}
static REG16 MEMCALL memnc_rd16(UINT32 address) {
(void)address;
return(0xffff);
}
static void MEMCALL memnc_wr8(UINT32 address, REG8 value) {
(void)address;
(void)value;
}
static void MEMCALL memnc_wr16(UINT32 address, REG16 value) {
(void)address;
(void)value;
}
// ---- memory 000000-0ffffff + 64KB
typedef struct {
MEM8READ rd8[0x22];
MEM8WRITE wr8[0x22];
MEM16READ rd16[0x22];
MEM16WRITE wr16[0x22];
} MEMFN0;
typedef struct {
MEM8READ brd8; // E8000-F7FFF byte read
MEM8READ ird8; // F8000-FFFFF byte read
MEM8WRITE bwr8; // E8000-FFFFF byte write
MEM16READ brd16; // E8000-F7FFF word read
MEM16READ ird16; // F8000-FFFFF word read
MEM16WRITE bwr16; // F8000-FFFFF word write
} MMAPTBL;
typedef struct {
MEM8READ rd8;
MEM8WRITE wr8;
MEM16READ rd16;
MEM16WRITE wr16;
} VACCTBL;
static MEMFN0 memfn0 = {
{memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 00
memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 20
memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 40
memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 60
memmain_rd8, memmain_rd8, memmain_rd8, memmain_rd8, // 80
memtram_rd8, memvram0_rd8, memvram0_rd8, memvram0_rd8, // a0
memems_rd8, memems_rd8, memmain_rd8, memmain_rd8, // c0
memvram0_rd8, memmain_rd8, memmain_rd8, memf800_rd8, // e0
memmain_rd8, memmain_rd8},
{memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 00
memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 20
memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 40
memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 60
memmain_wr8, memmain_wr8, memmain_wr8, memmain_wr8, // 80
memtram_wr8, memvram0_wr8, memvram0_wr8, memvram0_wr8, // a0
memems_wr8, memems_wr8, memd000_wr8, memd000_wr8, // c0
memvram0_wr8, memnc_wr8, memnc_wr8, memnc_wr8, // e0
memmain_wr8, memmain_wr8},
{memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 00
memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 20
memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 40
memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 60
memmain_rd16, memmain_rd16, memmain_rd16, memmain_rd16, // 80
memtram_rd16, memvram0_rd16, memvram0_rd16, memvram0_rd16, // a0
memems_rd16, memems_rd16, memmain_rd16, memmain_rd16, // c0
memvram0_rd16, memmain_rd16, memmain_rd16, memf800_rd16, // e0
memmain_rd16, memmain_rd16},
{memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 00
memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 20
memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 40
memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 60
memmain_wr16, memmain_wr16, memmain_wr16, memmain_wr16, // 80
memtram_wr16, memvram0_wr16, memvram0_wr16, memvram0_wr16, // a0
memems_wr16, memems_wr16, memd000_wr16, memd000_wr16, // c0
memvram0_wr16, memnc_wr16, memnc_wr16, memnc_wr16, // e0
memmain_wr16, memmain_wr16}};
static const MMAPTBL mmaptbl[2] = {
{memmain_rd8, memf800_rd8, memnc_wr8,
memmain_rd16, memf800_rd16, memnc_wr16},
{memf800_rd8, memf800_rd8, memepson_wr8,
memf800_rd16, memf800_rd16, memepson_wr16}};
static const VACCTBL vacctbl[0x10] = {
{memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16}, // 00
{memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16},
{memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16},
{memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16},
{memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16}, // 40
{memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16},
{memvram0_rd8, memvram0_wr8, memvram0_rd16, memvram0_wr16},
{memvram1_rd8, memvram1_wr8, memvram1_rd16, memvram1_wr16},
{memtcr0_rd8, memtdw0_wr8, memtcr0_rd16, memtdw0_wr16}, // 80
{memtcr1_rd8, memtdw1_wr8, memtcr1_rd16, memtdw1_wr16},
{memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16},
{memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16},
{memvram0_rd8, memrmw0_wr8, memvram0_rd16, memrmw0_wr16}, // c0
{memvram1_rd8, memrmw1_wr8, memvram1_rd16, memrmw1_wr16},
{memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16},
{memegc_rd8, memegc_wr8, memegc_rd16, memegc_wr16}};
void MEMCALL memm_arch(UINT type) {
const MMAPTBL *mm;
mm = mmaptbl + (type & 1);
memfn0.rd8[0xe8000 >> 15] = mm->brd8;
memfn0.rd8[0xf0000 >> 15] = mm->brd8;
memfn0.rd8[0xf8000 >> 15] = mm->ird8;
memfn0.wr8[0xe8000 >> 15] = mm->bwr8;
memfn0.wr8[0xf0000 >> 15] = mm->bwr8;
memfn0.wr8[0xf8000 >> 15] = mm->bwr8;
memfn0.rd16[0xe8000 >> 15] = mm->brd16;
memfn0.rd16[0xf0000 >> 15] = mm->brd16;
memfn0.rd16[0xf8000 >> 15] = mm->ird16;
memfn0.wr16[0xe8000 >> 15] = mm->bwr16;
memfn0.wr16[0xf0000 >> 15] = mm->bwr16;
memfn0.wr16[0xf8000 >> 15] = mm->bwr16;
}
void MEMCALL memm_vram(UINT func) {
const VACCTBL *vacc;
#if defined(SUPPORT_PC9821)
if (!(func & 0x20)) {
#endif // defined(SUPPORT_PC9821)
vacc = vacctbl + (func & 0x0f);
memfn0.rd8[0xa8000 >> 15] = vacc->rd8;
memfn0.rd8[0xb0000 >> 15] = vacc->rd8;
memfn0.rd8[0xb8000 >> 15] = vacc->rd8;
memfn0.rd8[0xe0000 >> 15] = vacc->rd8;
memfn0.wr8[0xa8000 >> 15] = vacc->wr8;
memfn0.wr8[0xb0000 >> 15] = vacc->wr8;
memfn0.wr8[0xb8000 >> 15] = vacc->wr8;
memfn0.wr8[0xe0000 >> 15] = vacc->wr8;
memfn0.rd16[0xa8000 >> 15] = vacc->rd16;
memfn0.rd16[0xb0000 >> 15] = vacc->rd16;
memfn0.rd16[0xb8000 >> 15] = vacc->rd16;
memfn0.rd16[0xe0000 >> 15] = vacc->rd16;
memfn0.wr16[0xa8000 >> 15] = vacc->wr16;
memfn0.wr16[0xb0000 >> 15] = vacc->wr16;
memfn0.wr16[0xb8000 >> 15] = vacc->wr16;
memfn0.wr16[0xe0000 >> 15] = vacc->wr16;
if (!(func & (1 << VOPBIT_ANALOG))) { // digital
memfn0.rd8[0xe0000 >> 15] = memnc_rd8;
memfn0.wr8[0xe0000 >> 15] = memnc_wr8;
memfn0.rd16[0xe0000 >> 15] = memnc_rd16;
memfn0.wr16[0xe0000 >> 15] = memnc_wr16;
}
#if defined(SUPPORT_PC9821)
}
else {
memfn0.rd8[0xa8000 >> 15] = memvga0_rd8;
memfn0.rd8[0xb0000 >> 15] = memvga1_rd8;
memfn0.rd8[0xb8000 >> 15] = memnc_rd8;
memfn0.rd8[0xe0000 >> 15] = memvgaio_rd8;
memfn0.wr8[0xa8000 >> 15] = memvga0_wr8;
memfn0.wr8[0xb0000 >> 15] = memvga1_wr8;
memfn0.wr8[0xb8000 >> 15] = memnc_wr8;
memfn0.wr8[0xe0000 >> 15] = memvgaio_wr8;
memfn0.rd16[0xa8000 >> 15] = memvga0_rd16;
memfn0.rd16[0xb0000 >> 15] = memvga1_rd16;
memfn0.rd16[0xb8000 >> 15] = memnc_rd16;
memfn0.rd16[0xe0000 >> 15] = memvgaio_rd16;
memfn0.wr16[0xa8000 >> 15] = memvga0_wr16;
memfn0.wr16[0xb0000 >> 15] = memvga1_wr16;
memfn0.wr16[0xb8000 >> 15] = memnc_wr16;
memfn0.wr16[0xe0000 >> 15] = memvgaio_wr16;
}
#endif // defined(SUPPORT_PC9821)
}
// ---- memory f00000-fffffff
typedef struct {
MEM8READ rd8[8];
MEM8WRITE wr8[8];
MEM16READ rd16[8];
MEM16WRITE wr16[8];
} MEMFNF;
static REG8 MEMCALL memsys_rd8(UINT32 address) {
address -= 0xf00000;
return(memfn0.rd8[address >> 15](address));
}
static REG16 MEMCALL memsys_rd16(UINT32 address) {
address -= 0xf00000;
return(memfn0.rd16[address >> 15](address));
}
static void MEMCALL memsys_wr8(UINT32 address, REG8 value) {
address -= 0xf00000;
memfn0.wr8[address >> 15](address, value);
}
static void MEMCALL memsys_wr16(UINT32 address, REG16 value) {
address -= 0xf00000;
memfn0.wr16[address >> 15](address, value);
}
#if defined(SUPPORT_PC9821)
static const MEMFNF memfnf = {
{memvgaf_rd8, memvgaf_rd8, memvgaf_rd8, memvgaf_rd8,
memnc_rd8, memsys_rd8, memsys_rd8, memsys_rd8},
{memvgaf_wr8, memvgaf_wr8, memvgaf_wr8, memvgaf_wr8,
memnc_wr8, memsys_wr8, memsys_wr8, memsys_wr8},
{memvgaf_rd16, memvgaf_rd16, memvgaf_rd16, memvgaf_rd16,
memnc_rd16, memsys_rd16, memsys_rd16, memsys_rd16},
{memvgaf_wr16, memvgaf_wr16, memvgaf_wr16, memvgaf_wr16,
memnc_wr16, memsys_wr16, memsys_wr16, memsys_wr16}};
#else
static const MEMFNF memfnf = {
{memnc_rd8, memnc_rd8, memnc_rd8, memnc_rd8,
memnc_rd8, memsys_rd8, memsys_rd8, memsys_rd8},
{memnc_wr8, memnc_wr8, memnc_wr8, memnc_wr8,
memnc_wr8, memsys_wr8, memsys_wr8, memsys_wr8},
{memnc_rd16, memnc_rd16, memnc_rd16, memnc_rd16,
memnc_rd16, memsys_rd16, memsys_rd16, memsys_rd16},
{memnc_wr16, memnc_wr16, memnc_wr16, memnc_wr16,
memnc_wr16, memsys_wr16, memsys_wr16, memsys_wr16}};
#endif
// ----
REG8 MEMCALL memp_read8(UINT32 address) {
if (address < I286_MEMREADMAX) {
return(mem[address]);
}
else {
address = address & CPU_ADRSMASK;
if (address < USE_HIMEM) {
return(memfn0.rd8[address >> 15](address));
}
else if (address < CPU_EXTLIMIT16) {
return(CPU_EXTMEMBASE[address]);
}
else if (address < 0x00f00000) {
return(0xff);
}
else if (address < 0x01000000) {
return(memfnf.rd8[(address >> 17) & 7](address));
}
#if defined(CPU_EXTLIMIT)
else if (address < CPU_EXTLIMIT) {
return(CPU_EXTMEMBASE[address]);
}
#endif // defined(CPU_EXTLIMIT)
#if defined(SUPPORT_PC9821)
else if ((address >= 0xfff00000) && (address < 0xfff80000)) {
return(memvgaf_rd8(address));
}
#endif // defined(SUPPORT_PC9821)
else {
// TRACEOUT(("out of mem (read8): %x", address));
return(0xff);
}
}
}
REG16 MEMCALL memp_read16(UINT32 address) {
REG16 ret;
if (address < (I286_MEMREADMAX - 1)) {
return(LOADINTELWORD(mem + address));
}
else if ((address + 1) & 0x7fff) { // non 32kb boundary
address = address & CPU_ADRSMASK;
if (address < USE_HIMEM) {
return(memfn0.rd16[address >> 15](address));
}
else if (address < CPU_EXTLIMIT16) {
return(LOADINTELWORD(CPU_EXTMEMBASE + address));
}
else if (address < 0x00f00000) {
return(0xffff);
}
else if (address < 0x01000000) {
return(memfnf.rd16[(address >> 17) & 7](address));
}
#if defined(CPU_EXTLIMIT)
else if (address < CPU_EXTLIMIT) {
return(LOADINTELWORD(CPU_EXTMEMBASE + address));
}
#endif // defined(CPU_EXTLIMIT)
#if defined(SUPPORT_PC9821)
else if ((address >= 0xfff00000) && (address < 0xfff80000)) {
return(memvgaf_rd16(address));
}
#endif // defined(SUPPORT_PC9821)
else {
// TRACEOUT(("out of mem (read16): %x", address));
return(0xffff);
}
}
else {
ret = memp_read8(address + 0);
ret += (REG16)(memp_read8(address + 1) << 8);
return(ret);
}
}
UINT32 MEMCALL memp_read32(UINT32 address) {
UINT32 pos;
UINT32 ret;
if (address < (I286_MEMREADMAX - 3)) {
return(LOADINTELDWORD(mem + address));
}
else if (address >= USE_HIMEM) {
pos = address & CPU_ADRSMASK;
if ((pos >= USE_HIMEM) && ((pos + 3) < CPU_EXTLIMIT16)) {
return(LOADINTELDWORD(CPU_EXTMEMBASE + pos));
}
}
if (!(address & 1)) {
ret = memp_read16(address + 0);
ret += (UINT32)memp_read16(address + 2) << 16;
}
else {
ret = memp_read8(address + 0);
ret += (UINT32)memp_read16(address + 1) << 8;
ret += (UINT32)memp_read8(address + 3) << 24;
}
return(ret);
}
void MEMCALL memp_write8(UINT32 address, REG8 value) {
if (address < I286_MEMWRITEMAX) {
mem[address] = (UINT8)value;
}
else {
address = address & CPU_ADRSMASK;
if (address < USE_HIMEM) {
memfn0.wr8[address >> 15](address, value);
}
else if (address < CPU_EXTLIMIT16) {
CPU_EXTMEMBASE[address] = (UINT8)value;
}
else if (address < 0x00f00000) {
}
else if (address < 0x01000000) {
memfnf.wr8[(address >> 17) & 7](address, value);
}
#if defined(CPU_EXTLIMIT)
else if (address < CPU_EXTLIMIT) {
CPU_EXTMEMBASE[address] = (UINT8)value;
}
#endif // defined(CPU_EXTLIMIT)
#if defined(SUPPORT_PC9821)
else if ((address >= 0xfff00000) && (address < 0xfff80000)) {
memvgaf_wr8(address, value);
}
#endif // defined(SUPPORT_PC9821)
else {
// TRACEOUT(("out of mem (write8): %x", address));
}
}
}
void MEMCALL memp_write16(UINT32 address, REG16 value) {
if (address < (I286_MEMWRITEMAX - 1)) {
STOREINTELWORD(mem + address, value);
}
else if ((address + 1) & 0x7fff) { // non 32kb boundary
address = address & CPU_ADRSMASK;
if (address < USE_HIMEM) {
memfn0.wr16[address >> 15](address, value);
}
else if (address < CPU_EXTLIMIT16) {
STOREINTELWORD(CPU_EXTMEMBASE + address, value);
}
else if (address < 0x00f00000) {
}
else if (address < 0x01000000) {
memfnf.wr16[(address >> 17) & 7](address, value);
}
#if defined(CPU_EXTLIMIT)
else if (address < CPU_EXTLIMIT) {
STOREINTELWORD(CPU_EXTMEMBASE + address, value);
}
#endif // defined(CPU_EXTLIMIT)
#if defined(SUPPORT_PC9821)
else if ((address >= 0xfff00000) && (address < 0xfff80000)) {
memvgaf_wr16(address, value);
}
#endif // defined(SUPPORT_PC9821)
else {
// TRACEOUT(("out of mem (write16): %x", address));
}
}
else {
memp_write8(address + 0, (UINT8)value);
memp_write8(address + 1, (UINT8)(value >> 8));
}
}
void MEMCALL memp_write32(UINT32 address, UINT32 value) {
UINT32 pos;
if (address < (I286_MEMWRITEMAX - 3)) {
STOREINTELDWORD(mem + address, value);
return;
}
else if (address >= USE_HIMEM) {
pos = address & CPU_ADRSMASK;
if ((pos >= USE_HIMEM) && ((pos + 3) < CPU_EXTLIMIT16)) {
STOREINTELDWORD(CPU_EXTMEMBASE + pos, value);
return;
}
}
if (!(address & 1)) {
memp_write16(address + 0, (UINT16)value);
memp_write16(address + 2, (UINT16)(value >> 16));
}
else {
memp_write8(address + 0, (UINT8)value);
memp_write16(address + 1, (UINT16)(value >> 8));
memp_write8(address + 3, (UINT8)(value >> 24));
}
}
void MEMCALL memp_reads(UINT32 address, void *dat, UINT leng) {
UINT8 *out = (UINT8 *)dat;
UINT diff;
/* fast memory access */
if ((address + leng) < I286_MEMREADMAX) {
CopyMemory(dat, mem + address, leng);
return;
}
address = address & CPU_ADRSMASK;
if ((address >= USE_HIMEM) && (address < CPU_EXTLIMIT16)) {
diff = CPU_EXTLIMIT16 - address;
if (diff >= leng) {
CopyMemory(dat, CPU_EXTMEMBASE + address, leng);
return;
}
CopyMemory(dat, CPU_EXTMEMBASE + address, diff);
out += diff;
leng -= diff;
address += diff;
}
/* slow memory access */
while (leng-- > 0) {
*out++ = memp_read8(address++);
}
}
void MEMCALL memp_writes(UINT32 address, const void *dat, UINT leng) {
const UINT8 *out = (UINT8 *)dat;
UINT diff;
/* fast memory access */
if ((address + leng) < I286_MEMREADMAX) {
CopyMemory(mem + address, dat, leng);
return;
}
address = address & CPU_ADRSMASK;
if ((address >= USE_HIMEM) && (address < CPU_EXTLIMIT16)) {
diff = CPU_EXTLIMIT16 - address;
if (diff >= leng) {
CopyMemory(CPU_EXTMEMBASE + address, dat, leng);
return;
}
CopyMemory(CPU_EXTMEMBASE + address, dat, diff);
out += diff;
leng -= diff;
address += diff;
}
/* slow memory access */
while (leng-- > 0) {
memp_write8(address++, *out++);
}
}
// ---- Logical Space (BIOS)
static UINT32 MEMCALL physicaladdr(UINT32 addr, BOOL wr) {
UINT32 a;
UINT32 pde;
UINT32 pte;
a = CPU_STAT_PDE_BASE + ((addr >> 20) & 0xffc);
pde = memp_read32(a);
if (!(pde & CPU_PDE_PRESENT)) {
goto retdummy;
}
if (!(pde & CPU_PDE_ACCESS)) {
memp_write8(a, (UINT8)(pde | CPU_PDE_ACCESS));
}
a = (pde & CPU_PDE_BASEADDR_MASK) + ((addr >> 10) & 0xffc);
pte = cpu_memoryread_d(a);
if (!(pte & CPU_PTE_PRESENT)) {
goto retdummy;
}
if (!(pte & CPU_PTE_ACCESS)) {
memp_write8(a, (UINT8)(pte | CPU_PTE_ACCESS));
}
if ((wr) && (!(pte & CPU_PTE_DIRTY))) {
memp_write8(a, (UINT8)(pte | CPU_PTE_DIRTY));
}
addr = (pte & CPU_PTE_BASEADDR_MASK) + (addr & 0x00000fff);
return(addr);
retdummy:
return(0x01000000); /* XXX */
}
void MEMCALL meml_reads(UINT32 address, void *dat, UINT leng) {
UINT size;
if (!CPU_STAT_PAGING) {
memp_reads(address, dat, leng);
}
else {
while(leng) {
size = 0x1000 - (address & 0xfff);
size = min(size, leng);
memp_reads(physicaladdr(address, FALSE), dat, size);
address += size;
dat = ((UINT8 *)dat) + size;
leng -= size;
}
}
}
void MEMCALL meml_writes(UINT32 address, const void *dat, UINT leng) {
UINT size;
if (!CPU_STAT_PAGING) {
memp_writes(address, dat, leng);
}
else {
while(leng) {
size = 0x1000 - (address & 0xfff);
size = min(size, leng);
memp_writes(physicaladdr(address, TRUE), dat, size);
address += size;
dat = ((UINT8 *)dat) + size;
leng -= size;
}
}
}
REG8 MEMCALL memr_read8(UINT seg, UINT off) {
UINT32 addr;
addr = (seg << 4) + LOW16(off);
if (CPU_STAT_PAGING) {
addr = physicaladdr(addr, FALSE);
}
return(memp_read8(addr));
}
REG16 MEMCALL memr_read16(UINT seg, UINT off) {
UINT32 addr;
addr = (seg << 4) + LOW16(off);
if (!CPU_STAT_PAGING) {
return(memp_read16(addr));
}
else if ((addr + 1) & 0xfff) {
return(memp_read16(physicaladdr(addr, FALSE)));
}
return(memr_read8(seg, off) + (memr_read8(seg, off + 1) << 8));
}
void MEMCALL memr_write8(UINT seg, UINT off, REG8 dat) {
UINT32 addr;
addr = (seg << 4) + LOW16(off);
if (CPU_STAT_PAGING) {
addr = physicaladdr(addr, TRUE);
}
memp_write8(addr, dat);
}
void MEMCALL memr_write16(UINT seg, UINT off, REG16 dat) {
UINT32 addr;
addr = (seg << 4) + LOW16(off);
if (!CPU_STAT_PAGING) {
memp_write16(addr, dat);
}
else if ((addr + 1) & 0xfff) {
memp_write16(physicaladdr(addr, TRUE), dat);
}
else {
memr_write8(seg, off, (REG8)dat);
memr_write8(seg, off + 1, (REG8)(dat >> 8));
}
}
void MEMCALL memr_reads(UINT seg, UINT off, void *dat, UINT leng) {
UINT32 addr;
UINT rem;
UINT size;
while(leng) {
off = LOW16(off);
addr = (seg << 4) + off;
rem = 0x10000 - off;
size = min(leng, rem);
if (CPU_STAT_PAGING) {
rem = 0x1000 - (addr & 0xfff);
size = min(size, rem);
addr = physicaladdr(addr, FALSE);
}
memp_reads(addr, dat, size);
off += size;
dat = ((UINT8 *)dat) + size;
leng -= size;
}
}
void MEMCALL memr_writes(UINT seg, UINT off, const void *dat, UINT leng) {
UINT32 addr;
UINT rem;
UINT size;
while(leng) {
off = LOW16(off);
addr = (seg << 4) + off;
rem = 0x10000 - off;
size = min(leng, rem);
if (CPU_STAT_PAGING) {
rem = 0x1000 - (addr & 0xfff);
size = min(size, rem);
addr = physicaladdr(addr, TRUE);
}
memp_writes(addr, dat, size);
off += size;
dat = ((UINT8 *)dat) + size;
leng -= size;
}
}
#endif
RetroPC.NET-CVS <cvs@retropc.net>